Introduction to Mathcad

By Gilberto E. Urroz
February 2006

Table of Contents

- Introduction to Mathcad, 1
- Using Mathcad as a calculator, 1
- Functions in Mathcad, 2
- Using Mathcad function root to find the root of an equation, 3
- Defining variables in Mathcad, 3
- Documenting the worksheet, 4
- Selecting fields in the worksheet for editing and repositioning, 4
- Equation solution using variables, 4
- Solution of a single equation using a Given-Find block, 5
- Solving multiple equations with a Given-Find block, 6
- Using Greek letters in expressions, 8
- Calculations using units, 9
- Saving the worksheet, 11
- Defining, tabulating, and plotting a function, 13
- Tables and plots of multiple functions, 15
- Multiply-defined functions, 19
- Symbolic evaluation of calculus operations, 20
- Numerical evaluation of summations, products, and integrals, 23
- Calculus operations on user-defined functions, 23
- Symbolic evaluation of derivatives in user-defined functions, 25
- Functions defined by summations and integrals, 26
- Functions defined by a Given-Find block, 28
- Symbolic manipulation of algebraic expressions, 30
- Roots of a polynomial, 32
- Visualizing the roots of the polynomial, 32
- Working with complex numbers, 36
- Symbolic solutions to single equations, 33
- Symbolic solutions to systems of equations, 34
- Complex solutions to equations, 37
- Graphics of matrices (example using complex functions), 37
- Visualization of potential flows using complex functions, 39
- Vector field plot for flow velocities from a complex function, 40
- Additional matrix plots, 41
- Entering data into a matrix, 43
- Operations with matrices, 45
- Matrices used in the solution of systems of linear equations, 46
- Eigenvalues and eigenvectors of a square matrix, 47
- Operations with vectors, 48
- Operations with elements of matrices and vectors, 48
- Data fitting using vectors (linfit), 48
- Curve interpolation with splines, 50
- Surface interpolation with splines, 52
- Simple linear data fitting, 52
- Solution of first-order ordinary differential equations, 54
- Solving a second-order ODE with rkfixed, 56
- ODE solution: gradually-varied flow (GVF) solution in a trapezoidal channel, 58
- Mathcad reference tables and User's Guide, 60
- Using Mathcad's Tutorials, 61
- Using Mathcad's QuickSheets, 62

Introduction to Mathcad

Prepared by Gilberto E. Urroz, February 2006
To get started, find the Mathcad 13 icon in your Start>Programs button in Windows. The Mathcad interface is shown below.

The interface shows a main window and a Trace window. At this point we will not use the trace window, therefore, you could click it off leaving only the main window for operations.

Using Mathcad as a calculator

Mathcad can be used as a calculator. For example, click on the main window in an area near the top left corner, and type an equal sign $(=)$. This produces the following entry in the worksheet:

The placeholder to the left of the equal sign (in red) is waiting for an entry. Start typing:

$$
1+2 / 3+4 / 5
$$

Then, click somewhere else in the main window. The result is the following:

$$
1+\frac{2}{3+\frac{4}{5}}=1.526
$$

This exercise illustrates the use of Mathcad to perform simple calculations.

Functions in Mathcad

Calculations may involve mathematical functions such as \sin , \cos, \exp, etc. You can insert any function by using the $f(x)$ button in the toolbar $f(x)$. Pressing this button provides a menu of functions. The figure below illustrates the use of the function cosine:

As an alternative, you can simply type the name of the function, i.e., cos.
As an exercise, click in another area of the main Mathcad window, type an equal sign, and in the red placeholder type the following expression (you can either use the $f(x)$ button or type the name of the functions \sin and \cos):

$$
2.5 * \sin (2.5)+1.2 * \cos \left(2+3 /\left(1+4 * 1.2^{\wedge} 2\right)\right)
$$

Then, click somewhere else in the main window. The result of this operation is now shown as:

$$
2.5 \cdot \sin (2.5)+1.2 \cdot \cos \left[2+\frac{3}{\left(1+4.1 .2^{2}\right)}\right]=0.577
$$

It is not always necessary to type the equal sign first to calculate a numerical expression. For example, click somewhere in the worksheet and type the following:

$$
(2.5+3.2 /(1.2+\sin (1.25)))=
$$

The result is:

$$
\left[2.5+\frac{3.2}{(1.2+\sin (1.25))}\right]=3.989
$$

Using Mathcad function root to find the root of an equation
Explore on your own the functions available under the $f(x)$ button. Some functions, such as \sin and \cos, are straightforward mathematical functions, while others are Mathcad functions used to perform specific operations in the worksheet. As an example, try the following exercise:

1. Click in an area of the main Mathcad window
2. Type an equal sign $(=)$
3. Using the $f(x)$ button, select function root under the Solving category. Press the [Ok] button. The result is the following: $\operatorname{root}(\mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{1})$
4. Click on the first placeholder and type $x^{\wedge} 3[\rightarrow]-x-24$
5. Click on the second placeholder and type x
6. Click on the third placeholder and type 0
7. Click on the fourth placeholder and type 5
8. Click somewhere else in the worksheet to see the result:

$$
\operatorname{root}\left(x^{3}-x-24, x, 0,5\right)=3
$$

Function root was used to find the solution of the equation $x^{3}-x-24=0$, specifying that the unknown of interest is x, and providing the interval $0<x<5$ as the preferred interval for the solution. The right-hand side of this result shows that the root sought is $x=3$.

Defining variables in Mathcad

To define a variable in Mathcad use the assignment operator, namely, a colon followed by an equal sign,$:=$, which you can get by typing a colon (). Click anywhere in the worksheet and make the following variable assignment: $x:=-2$. Then, click somewhere else in the worksheet. The value of 2 is now stored in the name x. The value $x=2$ will be replaced into any expression containing the name x that is located below or to the right of the assignment statement. To check this fact, type an equal sign in a location above the assignment statement $x:=2$ and fill the placeholder to the left with the expression $x^{2}-3$. The result is inconclusive, i.e.,

$$
x^{3}-3=1
$$

Then, repeat this operation in a location below or to the right of the assignment statement $x:=2$. The result now is:

$$
x^{3}-3=5
$$

Once you have made variable assignments, you can use the assigned variables to calculate expressions. As an example, assign the values $x:=-2$ and $y:=3$, then calculate the following expression: $x^{2}+y^{2}$. The result may look somewhat like this:

$$
\begin{aligned}
& x:=-2 \quad y:=3 \\
& x^{2}+y^{2}=13
\end{aligned}
$$

Documenting the worksheet
In order to document your worksheet, you can add text to it by clicking on any place in the worksheet and typing " followed by the text. (Alternatively, you can use Insert>Text Region in the worksheet menu). For example, the last exercise above, can be documented as follows:

$$
\begin{aligned}
& \text { For the values } x:=-2 \quad \text { and } \quad y:=3 \\
& \text { the sum of squares is calculated as: } \quad x^{2}+y^{2}=13
\end{aligned}
$$

Selecting fields in the worksheet for editing and repositioning If you click on any of the text lines or the operations shown above, the corresponding field will be shown enclosed in a rectangle. This indicates that the field can be edited for text or math calculations. An example is shown below:

A text or calculation field can also be selected by clicking in a region near the field and dragging the mouse towards the field. In this case, the field is enclosed by a frame with a broken line for boundary, e.g.,

When selected in this way, a field can be dragged and positioned somewhere else in the worksheet. For example, the result shown above could be re-organized as follows:

For the values $\quad \mathrm{x}:=-2$ and $\mathrm{y}:=3$
the sum of squares is calculated as:

$$
x+y^{2}=13
$$

A field selected by dragging can be erased from the worksheet by pressing the [delete] or the [backspace] key. The selected field can also be copied and pasted by using Cntl-C and Cntl-V, respectively. By dragging on top of two or more fields, multiple fields can be selected for deletion, copying, or relocation.

Equation solution using variables

In an earlier section we introduced function root for the solution of equations. The example presented earlier required four arguments, namely, the left-hand side of the equation, the unknown, and the limits of the interval where the solution was sought.

Using variables, we can provide an initial guess for the unknown, and then use function root with only the first two arguments to solve the equation. The following example repeats the solution shown earlier, providing an initial guess through a variable assignment:

$$
x=-100 \quad \text { root }\left(x^{3}-x-24, x\right)=3
$$

Solution of a single equation using a Given-Find block

Suppose that you want to solve and equation of the form $f(\ldots, x, \ldots)=g(\ldots, x, \ldots)$ for x. The solution can be accomplished by using a Given-Find block according the following structure:

$\mathrm{x}:=\mathrm{x} 0$
Given
$\mathrm{f}(\ldots, \mathrm{x} \ldots .)=.\mathrm{g}(\ldots, \mathrm{x}, \ldots)$.
$\mathrm{x}:=\operatorname{Find}(\mathrm{x}) \quad \mathrm{x}=$

where $x:=x 0$ is an initial guess for the solution, and the symbol $=$ in the equation is entered by pressing Cntl $=$. Notice that the initial guess is shown before the Given-Find block, and that the solution requires the use of function Find after the equation is defined. To see the solution to the equation, we add the expression $x=$ to the right of the Find statement. The field $x=$ will show the actual value of the solution. Consider the following example:

$$
\begin{aligned}
& x=-2 \\
& \text { Given } \\
& \quad x^{2}-5 \cdot x+6=0 \\
& \quad x=\text { Find }(x) \quad x=2
\end{aligned}
$$

To find a different real solution for the equation (if it exists) start with a different initial guess. For this case, for example, we change the initial guess from -2 to, say, 5.
Mathcad then recalculates the solution automatically. The new result is shown below:

$$
\begin{aligned}
& x:=5 \\
& \text { Given } \\
& \quad x^{2}-5 \cdot x+6=0 \\
& \quad x:=\text { Find }(x) \quad x=3
\end{aligned}
$$

Note: If you're not sure that Mathcad has recalculated your solution, you can force a recalculation by pressing the Calculate button in the toolbar $=$.

Solving multiple equations with a Given-Find block

The solution of multiple equations requires defining all the equations after the Given particle in the block, and using a vector to which function Find is assigned. Here is an example:

$$
\begin{aligned}
& x:=2 \quad y:=3 \\
& \text { Given } \\
& x^{2}+y^{2}=25 \\
& x^{3}+y^{3}=91 \\
& \binom{x}{y}:=\text { Find }(x, y) \\
& x=3 \quad y=4
\end{aligned}
$$

Notes:

1. Initial guesses for the unknowns $(x:=2, y:=3)$ are required before the Given block.
2. Remember to use $C n t l=$ to generate the symbol $=$ in the equations.
3. To enter the vector to which function Find is assigned, use the Vector and Matrix toolbar button in the toolbar [:::]. This generates the following palette:

Matrix	X
[:0] \times	
$\overrightarrow{f(1)} M^{\prime}$	
$\stackrel{\rightharpoonup}{\mathrm{x}} \cdot \stackrel{\rightharpoonup}{\mathrm{y}} \stackrel{\rightharpoonup}{\mathrm{x}} \times$	

Press the Matrix and vector button $[: \%]$, to generate the following entry form:

To enter the vector required in the example above, select 2 rows and 1 column. Then type the variable names x and y in the corresponding placeholders.[As an alternative way to enter a vector or matrix, use Cntl $+M$ after selecting an entry location in the worksheet].
4. Type $x=$ and $y=$ after function Find to see the results for x and y.

The approach presented here for 2 equations can be generalized to any number of equations. In the following example, we use a Given-Find block to solve a problem in hydraulics.
W.R.E. 12-18. A pump is installed to deliver water from a reservoir of surface elevation zero to another of elevation 300 ft . The 12 -in-diameter suction pipe $(\mathrm{f}=0.020)$ is 100 ft long and the 10 -in-diameter discharge pipe ($\mathrm{f}=0.026$) is 5000 ft long. The pump characteristic at 1200 rpm is defined by $H=375-24 Q^{2}$ where H, the pump head is in feet and Q is in cubic feet per second. Compute the rate at which this pump will deliver water under these conditions assuming the setting is low enought to avoid cavitation.

$$
\mathrm{cfs}:=\mathrm{ft}^{3} \cdot \sec ^{-1}
$$

Energy losses are written as: $\quad h_{f}=f \cdot \frac{L}{D} \cdot \frac{V^{2}}{2 \cdot g} \quad$ with, $\quad V=\frac{4 \cdot Q}{\pi \cdot D^{2}}, \quad \frac{V^{2}}{2 \cdot g}=\frac{8 \cdot Q^{2}}{\pi^{2} \cdot g \cdot D^{4}}$
and,

$$
h_{f}=\frac{8 \cdot f \cdot L}{\pi^{2} \cdot g \cdot D^{5}} \cdot Q^{2}
$$

The system equation will be:
$H=\Delta H+\frac{8 \cdot f_{1} \cdot L_{1}}{\pi^{2} \cdot g \cdot D_{1}{ }^{5}} \cdot Q^{2}+\frac{8 \cdot f_{2} \cdot L_{2}}{\pi^{2} \cdot g \cdot D_{2}{ }^{5}} \cdot Q^{2}$
with, $f_{1}:=0.020 \quad L_{1}:=100 \cdot \mathrm{ft} \quad \mathrm{D}_{1}:=12 \cdot \mathrm{in} \quad \mathrm{f}_{2}:=0.026 \quad \mathrm{~L}_{2}:=5000 \cdot \mathrm{ft} \quad \mathrm{D}_{2}:=10 \cdot \mathrm{in}$

$$
\Delta \mathrm{H}:=300 \mathrm{ft}
$$

We'll use a Given-Find block to solve for (Q, H) from the system and pump equations:
First guesses: $\quad \mathrm{Q}:=1 \cdot \mathrm{cfs} \quad \mathrm{H}:=100 \cdot \mathrm{ft}$
Given

$$
\begin{aligned}
& \mathrm{H}=375 \cdot 0 \cdot \mathrm{ft}-\left(24 \cdot \frac{\mathrm{ft}}{\mathrm{cfs}}\right) \cdot \mathrm{Q}^{2} \\
& \mathrm{H}=\Delta \mathrm{H}+\frac{8 \cdot \mathrm{f}_{1} \cdot \mathrm{~L}_{1}}{\pi^{2} \cdot \mathrm{~g} \cdot \mathrm{D}_{1}{ }^{5}} \cdot \mathrm{Q}^{2}+\frac{8 \cdot \mathrm{f}_{2} \cdot \mathrm{~L}_{2}}{\pi^{2} \cdot \mathrm{~g} \cdot \mathrm{D}_{2}^{5}} \cdot \mathrm{Q}^{2} \\
& \binom{Q}{\mathrm{Q}}:=\text { Find }(\mathrm{Q}, \mathrm{H}) \quad \mathrm{H}=319.099 \mathrm{ft}
\end{aligned}
$$

Notes:

[1] - Use Format>Properties and select Highlight Region in the Display tab to highlight a region in the worksheet. Press the [OK] button when done. Highlighting could be use to emphasize solutions in a worksheet as shown above.
[2] - This example illustrates the use of units in the calculations. Units usage is discussed in a subsequent section.

Using Greek letters in expressions

A palette with Greek letters is available by pressing the $\alpha \beta$ button in the toolbar $\alpha \beta$. The resulting floating palette is shown below:

Greek				
	$\beta \gamma$	δ		
	θ	k		
	ξ o	π		
	u ϕ	χ		
	В Г	\triangle	E	
	¢ I	K	A	
N	E 0	П		
	Y Φ	X		

Clicking on any of the letters will copy that letter to any entry point or text in the worksheet. To illustrate this situation we perform a calculation with trigonometric functions that features the value π.

$$
\sin \left(\frac{\pi}{6}\right)+\cos \left(\frac{\pi}{6}\right)=1.366
$$

Notice that Mathcad assigns the proper value to the symbol π in the calculation. [Note: The arguments of trigonometric functions in Mathcad need to be in radians. To convert an angle in degrees $\left(\theta^{o}\right)$ to its equivalent in radians $\left(\theta^{r}\right)$, use: $\theta^{r}=\frac{\pi}{180} \cdot \theta^{o}$].

Besides π, there are other Greek letters that have special meanings:

- δ : calculates Kronecker's delta function, $\delta(i, j)=1$ if $i=j$, or $\delta(i, j)=0$ if $i \neq j . \delta$ can also be used to represent the impulse function $\delta(x)$.
- $\quad \varepsilon$: calculates the third-order epsilon tensor, e.g., $\varepsilon(1,0,2)=-1$. This tensor is used in the definition of determinants for 3×3 matrices.
- $\quad \Gamma$: calculates the Gamma function, e.g., $\Gamma(2.3)=1.167$. This function is related to factorials of integer numbers as follows: $\Gamma(n+1)=n!$. The Gamma function is also used to define probability distributions of continuous random variables.
- Φ : calculates Heaviside step function, $\Phi(x)=0$ if $x<0, \Phi(x)=1$ if $x>0$.

An alternative way to enter Greek letters is to type the equivalent English letter and then type Cntl G. Try this exercise, after clicking on an entry location in the worksheet:

$$
a \operatorname{Cntl} G:=\sin \left(60^{*} p \operatorname{Cntl} G / 180\right)+\cos \left(75^{*} p \operatorname{Cntl} G / 180\right)
$$

Verify that the value of α is 1.125 . (Click in a location below the equation above, and type a Cntl $G=$).

Calculations using units

Units can be attached to numerical values by using the units button in the toolbar \boldsymbol{T}_{3}.
Pressing the button provides a menu of units as shown below (here, the SI unit of energy, the joule, is selected).

Pressing the [OK] button at this point would attach the joule units to a numerical value. As an exercise, define, in your worksheet, the following variables with units, and calculate the expression shown for v :

$$
\begin{aligned}
& \mathrm{v} 0:=2.5 \cdot \frac{\mathrm{~m}}{\mathrm{~s}} \quad \mathrm{a}:=-1.2 \frac{\mathrm{~m}}{2} \quad \mathrm{t}:=0.75 \cdot \mathrm{~s} \\
& \mathrm{v}:=\mathrm{v} 0+\mathrm{a} \cdot \mathrm{t} \quad \mathrm{v}=1.6 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{aligned}
$$

Notes:

1. To attach units use the symbol * between the numerical value and the unit. For example, type $v 0:=2.5 * \mathrm{~m} / \mathrm{s}$, then click somewhere else in the worksheet.
2. Although there is category for units of Velocity, the unit m / s is not included because it can be put together from m (in the Length category) and s (in the Time category). As an alternative, you can simply type the unit combination: m / s.
3. The calculation shown above uses five fields. The three fields in the first row were used to define variables with units. The first field in the second row represents the calculation of the variable $v:=v 0+a t$. However, this operation alone would not show the value of v. For that we need to add the last field in the second row, i.e., type $v=$

By default, a calculation involving units, Mathcad will provide the final result in units of the SI (Syteme International), e.g.,

$$
\begin{aligned}
& \mathrm{v} 0:=2.5 \cdot \frac{\mathrm{f}}{\mathrm{~s}} \quad \mathrm{a}:=-1.2 \cdot \frac{\mathrm{~m}}{\mathrm{~s}} \quad \mathrm{t}:=0.75 \cdot \mathrm{~s} \\
& \mathrm{v}:=\mathrm{v} 0+\mathrm{a} \cdot \mathrm{t} \quad \mathrm{v}=-0.138 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{aligned}
$$

Another example:

$$
\begin{aligned}
& \mathrm{v} 0:=2.5 \cdot \frac{\mathrm{f}}{\mathrm{~s}} \\
& \mathrm{a}:=-1.2 \cdot \frac{\mathrm{in}}{\mathrm{sec}^{2}} \mathrm{t}:=0.75 \cdot \mathrm{sec} \\
& \mathrm{v}:=\mathrm{v} 0+\mathrm{a} \cdot \mathrm{t} \quad \mathrm{v}=0.739 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{aligned}
$$

To change the default unit system, select Tools $>$ Worksheet Options, and click on the Unit system tab (see below).

The units systems available include MKS (meter-kilogram-second), CGS (centimeter-gram-second), and US (i.e., U.S. customary, or English, system). For example, selecting $U S$ as the default Unit system produces the following result for the last example above:

$$
\begin{array}{ll}
\mathrm{v} 0:=2.5 \cdot \frac{\mathrm{ft}}{\mathrm{~s}} & \mathrm{a}:=-1.2 \cdot \frac{\mathrm{in}}{\sec ^{2}} \mathrm{t}:=0.75 \cdot \mathrm{sec} \\
\mathrm{v}:=\mathrm{v} 0+\mathrm{a} \cdot \mathrm{t} & \mathrm{v}=2.425 \frac{\mathrm{ft}}{\mathrm{~s}}
\end{array}
$$

After a result has been calculated, you can do a unit conversion by replacing the units in the result with an equivalent unit. For example, the following calculations (with $U S$ as the default Unit system), provide a result in psi (pounds per square inch):

$$
\begin{array}{ll}
\mathrm{F}:=230 \cdot 1 \mathrm{bf} & \mathrm{~A}:=23 \cdot \mathrm{in}^{2} \\
\mathrm{p}:=\frac{\mathrm{F}}{\mathrm{~A}} & \mathrm{p}=10 \mathrm{psi}
\end{array}
$$

If you click on the $p s i$ units, a placeholder appears to the right of $p s i$. Click on the placeholder and type $p s f$ (pounds per square foot) to convert the result to those units, i.e.,

$$
\begin{array}{ll}
\mathrm{F}:=230 \cdot \mathrm{lbf} & \mathrm{~A}=23 \cdot \mathrm{in}^{2} \\
\mathrm{p}:=\frac{\mathrm{F}}{\mathrm{~A}} & \mathrm{p}=1.44 \times 10^{3} \mathrm{psf}
\end{array}
$$

It is possible to define your own units as in the following example, in which the unit $c f s$ (cubic feet per second) is defined by the user. The result, provided by Mathcad, is given in gpm (gallons per minute):

$$
\begin{aligned}
& \mathrm{cfs}:=\frac{\mathrm{f}^{3}}{\mathrm{sec}} \\
& \mathrm{X}:=2.45 \cdot \frac{\mathrm{ft}}{\mathrm{sec}} \quad \mathrm{~A}:=1.2 \cdot \mathrm{f}^{2} \quad \mathrm{Q}:=\mathrm{V} \cdot \mathrm{~A} \quad \mathrm{Q}=1.32 \times 10^{3} \mathrm{gpm}
\end{aligned}
$$

By clicking on the gpm units and replacing the placeholder with $c f s$ we get:

$$
\mathrm{V}=2.45 \cdot \frac{\mathrm{ft}}{\mathrm{sec}} \quad \mathrm{~A}=1.2 \cdot \mathrm{ft}^{2} \quad \mathrm{Q}:=\mathrm{V} \cdot \mathrm{~A} \quad \mathrm{Q}=2.94 \mathrm{cfs}
$$

Saving the worksheet
To save the worksheet, use File $>$ Save As ... and give it a name (e.g., FirstWorksheet). The file will be given the sub-index $x m c d$. Older versions of Mathcad used $m c d$.

To create a new worksheet, use Cntl-n. Here is an example of a well-documented Mathcad worksheet:

$$
\begin{aligned}
& \text { CEE } 3500-\text { Spring } 2006 \text { - Problem using continuity and energy equation in a pipeline. } \\
& \text { A pipeline with a } 3 \text {-in diameter is connected to a } 6 \text {-in pipeline through a smooth transition. A } \\
& \text { gage located in the } 3 \text {-in pipeline, at an elevation of } 2 \mathrm{ft} \text { (point } \mathrm{A} \text {), reads a pressure of } 5 \mathrm{psi} \text {, while a } \\
& \text { gage in the } 6 \text {-in pipeline, at an elevation of } 3.5 \mathrm{ft} \text { (point } \mathrm{B} \text {), reads } 2 \text { psi. Determine the energy } \\
& \text { losses between points } \mathrm{A} \text { and } \mathrm{B} \text { if the discharge through the pipeline is } 10 \mathrm{gpm} \text {. } \\
& \text { Solution } \text { The data given can be interpreted as follows: } \\
& \mathrm{DA}:=3 \cdot \mathrm{in} \quad \mathrm{DB}:=6 \cdot \mathrm{in} \quad \mathrm{zA}:=2 \cdot \mathrm{ft} \quad \mathrm{pA}:=5 \cdot \mathrm{psi} \quad \mathrm{zB}:=3.5 \cdot \mathrm{ft} \quad \mathrm{pB}:=2 \cdot \mathrm{psi} \\
& \mathrm{Q}:=10 \cdot \mathrm{gpm} \quad \gamma:=62 \cdot 4 \cdot \frac{\mathrm{lbf}}{\mathrm{f}^{3}} \\
& \text { The flow velocities are calculated as follows: } \\
& \text { VA }:=\frac{4 \cdot \mathrm{Q}}{\pi \cdot \mathrm{DA}^{2}} \quad \mathrm{VA}=0.454 \frac{\mathrm{ft}}{\mathrm{~s}} \quad \mathrm{VB}:=\frac{4 \cdot \mathrm{Q}}{\pi \cdot \mathrm{DB}} \quad \mathrm{VB}=0.113 \frac{\mathrm{ft}}{\mathrm{~s}}
\end{aligned}
$$

The solution of the energy equation can be accomplished using a Given-Find block as illustrated next.

Initial guess for head losses $h L: \quad h L:=0.5 \mathrm{ft}$
Given

$$
\begin{aligned}
& \left(\frac{\mathrm{pA}}{\gamma}\right)+\mathrm{zA}+\left(\frac{\mathrm{vA}^{2}}{2 \cdot \mathrm{~g}}\right)-\mathrm{hL}=\left(\frac{\mathrm{pB}}{\gamma}\right)+\mathrm{zB}+\left(\frac{\mathrm{vB}^{2}}{2 \cdot \mathrm{~g}}\right) \\
& \mathrm{hL}=\text { Find }(\mathrm{hL}) \quad \mathrm{hL}=5.426 \mathrm{ft}
\end{aligned}
$$

Here is another example of a Mathcad worksheet showing the solution to a compressible flow problem:
21.15. Air flow at a velocity of $121.9 \mathrm{~m} / \mathrm{s}$ occurs in a duct. If the temperature and pressure of this air flow are $20^{\circ} \mathrm{C}$ and 96.5 kPa abs, respectively, determine the following:
(a) the local sonic velocity (use equation 4-11, p 23)
$\mathrm{kPa}:=1000 \cdot \mathrm{~Pa}$
$\mathrm{k}:=1.4 \quad \mathrm{~T}:=(273.15+20) \cdot \mathrm{K} \quad \mathrm{R}=287 \cdot\left(\frac{\text { newton } \cdot \mathrm{m}}{\mathrm{kg} \cdot \mathrm{K}}\right) \quad \mathrm{V}=121 \cdot 9 \cdot \frac{\mathrm{~m}}{\mathrm{sec}}$
$\mathrm{c}:=\sqrt{\mathrm{k} \cdot \mathrm{R} \cdot \mathrm{T}} \quad \mathrm{c}=343.202 \mathrm{~m} \cdot \mathrm{~s}^{-1} \quad \mathrm{M}:=\frac{\mathrm{V}}{\mathrm{c}} \quad \mathrm{M}=0.355 \quad \mathrm{p}:=96.5 \cdot \mathrm{kPa}$
$\rho:=\frac{\mathrm{p}}{\mathrm{R} \cdot \mathrm{T}} \quad \rho=1.147 \mathrm{~kg} \cdot \mathrm{~m}^{-3}$
$c_{\mathrm{p}}:=1005 \cdot \frac{\text { newton } \cdot \mathrm{m}}{\mathrm{kg} \cdot \mathrm{K}}$
(b) the sonic velocity c at a point where this flow is changed isentropically to a Mach number of 1 (this sonic velocity is commonly used as a reference in tables and equations in gas dynamics)
$\mathrm{p}_{1}:=96.5 \cdot \mathrm{kPa} \quad \mathrm{p}_{2}:=\mathrm{p}_{1} \cdot\left(\frac{2}{\mathrm{k}+1}\right)^{\frac{\mathrm{k}}{\mathrm{k}-1}} \quad \mathrm{p}_{2}=50.979 \mathrm{kPa} \quad \rho_{1}:=\rho$
$V_{2}:=\left[2 \cdot \frac{p_{1}}{\rho} \cdot \frac{k}{k-1} \cdot 1-\left(\frac{p_{2}}{p_{1}}\right)^{\frac{k-1}{k}}\right]^{\frac{1}{2}} \quad V_{2}=313.299 m \cdot s^{-1}$
(c) the sonic velocity co at a stagnation point in this flow. (This sonic velocity is also a reference).
$\mathrm{T}_{1}:=\mathrm{T} \quad \mathrm{T}_{1}=293.15 \mathrm{~K} \quad \mathrm{p}_{1}=96.5 \mathrm{kPa} \quad \mathrm{V}_{1}:=\mathrm{V} \quad \mathrm{V}_{1}=121.9 \mathrm{~m} \cdot \mathrm{~s}^{-1}$
We need to solve the following equations simultaneously; Assume: $\quad \mathrm{p}_{0}:=50 \cdot \mathrm{kPa} \quad \mathrm{T}_{0}:=200 \cdot \mathrm{~K}$ Given
$\frac{p_{0}}{p_{1}}=\left(\frac{T_{0}}{T_{1}}\right)^{\frac{k}{k-1}} \quad \frac{v_{1}^{2}}{2}=c_{p} \cdot T_{0} \cdot\left[1-\left(\frac{p_{1}}{p_{0}}\right)^{\frac{k-1}{k}}\right] \quad\binom{p_{R}}{T_{R}}:=\operatorname{Find}\left(p_{0}, T_{0}\right)$
$\mathrm{p}_{0}=105.289 \mathrm{kPa} \quad \mathrm{T}_{\mathrm{o}}=300.543 \mathrm{~K}$
$c_{0}:=\sqrt{\mathrm{k} \cdot \mathrm{R} \cdot \mathrm{T}_{0}} \quad \mathrm{c}_{0}=347.503 \mathrm{~m} \cdot \mathrm{~s}^{-1}$

Defining, tabulating, and plotting a function
A function of a single variable can be defined by using, for example, $f(x)=$ expression. An example is shown below. After defining the function we evaluate it at $x=3.5$, and use it to find its roots with Mathcad function root as shown. After finding the roots, the function is evaluated at the roots to verify that $f(x)=0$ at those points:

$$
\begin{aligned}
& f(x):=x^{2}-5 x+6 \\
& f(3.5)=0.75 \\
& \operatorname{root}(f(x), x, 2.5,4)=3 \\
& \operatorname{root}(f(x), x, 0,2.5)=2
\end{aligned} \quad f(3)=0 \quad f^{\prime}(2)=0 .
$$

To produce a table of the function we need to define a vector of values of the independent variable x in a certain range $a<x<b$. Suppose that we want to divide the interval $[a, b]$ into n sub-intervals of the same width $\Delta x=(b-a) / n$, then we can define the vector of values of x using the rule $x_{j}=a+j \Delta x$, for $j=0,2, \ldots, n$. [Check that $a=x_{1}$ and $b=$ $\left.x_{n+1}\right]$. Subsequently we can produce a vector of values of $y_{j}=f\left(x_{j}\right)$. To show the table of y-vs- x values, create a matrix (e.g. Z) and define x as its first column, and y as its second column. The type $Z=$. A table of values of the function defined above is shown next:

$$
\begin{aligned}
& \mathrm{a}:=-2 \quad \mathrm{~b}:=5 \quad \mathrm{n}:=20 \quad \Delta \mathrm{x}:=\frac{(\mathrm{b}-\mathrm{a})}{\mathrm{n}} \quad \Delta \mathrm{x}=0.35 \\
& \mathrm{j}:=0 . . \mathrm{n} \quad \mathrm{x}_{\mathrm{j}}:=\mathrm{a}+\mathrm{j} \cdot \Delta \mathrm{x} \quad \mathrm{y}_{\mathrm{j}}:=\mathrm{f}\left(\mathrm{x}_{\mathrm{j}}\right) \\
& Z_{0, \mathrm{j}}:=\mathrm{x}_{\mathrm{j}} \quad Z_{1, \mathrm{j}}:=\mathrm{y}_{\mathrm{j}} \\
& \mathrm{Z}=
\end{aligned}
$$

Notes:

1. To enter a range (e.g., $j:=0 . . n$), use a semi-colon between the range limits. For the example above, use: $\mathrm{j}:=0 ; \mathrm{n}$
2. To enter a sub-index, type [or click on the sub-index button in the toolbar $\mathbf{x}_{\mathbf{2}}$.
3. If you prefer to see the table in the form of columns, change the assignation to matrix Z to the following: $Z_{j, 0}:=x_{j} \quad$ and $\quad Z_{j, 1}:=y_{j}$.

To produce a graph of the function, first, we need to generate the vectors of values of x and y, as we did above. Then, click on the region of the worksheet where you want the graph, and press the Graph toolbar button in the toolbar A. From the resulting menu, select the X-Y Plot button $\mathbb{区}$. You will now have a graph frame with six placeholders, as shown in the following figure.

Replace the middle placeholders with x and y (or x_{j} and y_{j}) to produce one of the following graphs:

The graphs above use a default range for x, namely, $-5<x<5$. To change the range in a graph, click on the graph and replace the values shown at the ends of each axis. For example, in the figure below we change the range to $-2<x<5$:

The following example shows the development of a plot using polar coordinates. The function to plot is $r=g(\theta)=5(1-\cos (\theta))$. The function is defined, and values of θ and r are generated as follows:

$$
\begin{aligned}
& \text { 薢 }(\theta):=5 \cdot(1-\cos (\theta)) \quad n=20 \\
& \theta 0:=0 \quad \text { Өn }:=2 \cdot \pi \quad \Delta \theta:=\frac{(\theta \mathrm{n}-\theta 0)}{\mathrm{n}} \quad \Delta \theta=0.314 \\
& \mathrm{j}:=0 . . \mathrm{n}+1 \quad \theta_{\mathrm{j}}:=\theta 0+\mathrm{j} \cdot \Delta \theta \quad \mathrm{r}_{\mathrm{j}}:=\mathrm{g}\left(\theta_{\mathrm{j}}\right)
\end{aligned}
$$

To produce a table of the r - θ data, use a matrix T for this case:
$\mathrm{T}_{0, j}:=\theta_{\mathrm{i}} \mathrm{T}_{1, j}=\mathrm{r}_{\mathrm{j}}$

$\mathrm{T}=$| | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | -0.314 | 0 | 0.314 | 0.628 | 0.942 | 1.257 | 1.571 | 1.885 | 2.199 | 2.513 |
| 1 | 0.245 | 0 | 0.245 | 0.955 | 2.061 | 3.455 | 5 | 6.545 | 7.939 | 9.045 |

To select a polar plot, use the polar plot button after clicking on the Graph toolbar button 4 . The resulting plot is shown below, after replacing the names θ and r in the appropriate placeholders:

The resulting curve is known as a cardiod (i.e., heart-shaped).
Tables and plots of multiple functions
The approach shown above for tabulating and plotting a single function can be generalized to the tabulation and plotting of two or more functions. Try the following exercise:

$$
\begin{aligned}
& f(x):=2.5 \cdot \sin (2 \cdot x) \quad \text { 叞 }(x):=2.5 \cdot \exp \left[-\left(\frac{x}{5}\right)\right] \cdot \cos (2 x) \quad a:=-\pi \quad b:=\pi \quad n:=40 \\
& \Delta x:=\frac{(b-a)}{n} \quad \Delta x=0.157 \quad j:=0 . . n \quad x_{j}=a+j \cdot \Delta x \quad y_{j}:=f\left(x_{j}\right) \quad z_{j}=g\left(x_{j}\right) \\
& M_{0, j}=x_{j} \quad M_{1, j}:=y_{j} \quad M_{2, j}=z_{j}
\end{aligned}
$$

The plot of $y-v s-x$ combined with that of $z-v s-x$ is shown below. To produce this plot enter x in the horizontal axis (the abscissas) placeholder, and type y, z in the vertical axis (the ordinates) placeholder. The graph shown was enlarged by clicking on the graph and then dragging the lower right corner away from the center of the graph.

To change the properties of the graph, click on the graph and then do a right-click with the mouse. Select the entry Format from the resulting menu. The current (default) settings for axes properties are shown below:

Select the [] Grid lines in both axes (X-Axis and Primary Y Axis), and select Crossed for the Axis Style. Press the [Apply] button to effect these changes in the graph. Then press the [OK] button. The modified graph is shown below:

Click on the graph once again, and do a right-click to select the Format window. This time, however, select the Label tab, and modified it to read as follows:

The fully-documented graph is shown below:

The following example illustrates the tabulations and plotting of two curves using a polar plot:

$$
\begin{aligned}
& f(\theta):=5 \cdot \sin (\theta) \quad \quad g(\theta):=2 \cdot 5 \cdot(1-\sin (\theta)) \quad a:=-\pi \quad b:=\pi \quad n:=40 \\
& \Delta x:=\frac{(b-a)}{n} \quad \Delta x=0.157 \quad j:=0 . . n \quad \theta_{j}:=a+j \cdot \Delta x \quad r_{j}:=f\left(\theta_{j}\right) \quad s_{\mathrm{s}}:=g\left(\theta_{j}\right) \\
& M_{0, j}:=\theta_{j} \quad M_{1, j}:=r_{j} \quad M_{2, j}:=s_{j}
\end{aligned}
$$

The graph is shown below:

Using the Format option from a right-click on the graph, select Gridlines for both the Radial and Angular coordinates, and Crossed for the Axis style in the Polar Axes tab. Also, in the Labels tab, type the following title: Antenna radiation. To modify the plot press the [Apply] and [OK] buttons. The resulting graph is shown below:

Multiply-defined functions

Suppose that we want to define the function

$$
f(x)=\left\{\begin{array}{cc}
|x-1|, & \text { for } x<1 \\
1-x, & \text { for } x \geq 1
\end{array}\right. \text {. }
$$

Mathcad provides function if for this purpose. The following exercise shows the definition of this function as well as a table and a plot of the same in the range $-5<x<5$:

$$
\begin{aligned}
& f(x):=i f\left(x<1,|x-1|, \frac{1}{x+1}\right) \\
& a:=-5 \quad b:=5 \quad n:=10 \quad \Delta x:=\frac{(b-a)}{n} \quad \Delta x=1 \\
& j:=0 . . n \quad x_{j}:=a+j \cdot \Delta x \quad y_{j}:=f\left(x_{j}\right) \quad Z_{0, j}:=x_{j} \quad Z_{1, j}=y_{j}
\end{aligned}
$$

$Z=$| | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 0 | -5 | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 |
| 1 | 6 | 5 | 4 | 3 | 2 | 1 | 0.5 | 0.333 | 0.25 | 0.2 |

The if function has the general form if(condition, option true, option false). If condition is true, then option true is selected. If condition is false, then option false is selected.

Consider now the following multiply-defined function that includes more than two possibilities:

$$
f(x)=\left\{\begin{array}{c}
x-1, \quad \text { for } x<0 \\
x^{2}-1, \quad \text { for } 0 \leq x<5 \\
1-x^{2}, \quad x \geq 5
\end{array} .\right.
$$

In this case it is possible to use a nested if function by re-defining the function statement as follows:

$$
f(x)=\left\{\begin{array}{c}
x-1, \quad \text { for } x<0, \text { exclusively } \\
x^{2}-1, \quad \text { for } x<5, \text { exclusively } \\
1-x^{2}, \quad \text { otherwise }
\end{array} .\right.
$$

Thus, using Mathcad's if function you can write:

$$
\operatorname{if}\left(x<0, x-1, \operatorname{if}\left(x<5, x^{2}-1,1-x^{2}\right)\right)
$$

The following figure shows the implementation of this function in Mathcad, including a table and plot of the function:

$$
\begin{aligned}
& f(x):=\text { if }\left(x<0, x-1, \text { if }\left(x<5, x^{2}-1,1-x^{2}\right)\right) \\
& \mathrm{a}:=-4 \quad \mathrm{~b}:=8 \quad \mathrm{n}:=12 \quad \Delta \mathrm{x}:=\frac{(\mathrm{b}-\mathrm{a})}{\mathrm{n}} \quad \Delta \mathrm{x}=1 \\
& \mathrm{j}:=0 \text {..n } \quad \mathrm{x}_{\mathrm{j}}:=\mathrm{a}+\mathrm{j} \cdot \Delta \mathrm{x} \quad \mathrm{y}_{\mathrm{j}}:=\mathrm{f}\left(\mathrm{x}_{\mathrm{j}}\right) \quad Z_{0, \mathrm{j}}:=\mathrm{x}_{\mathrm{j}} \quad Z_{1, \mathrm{j}}:=y_{j} \\
& \mathrm{Z}=\begin{array}{|l|r|r|r|r|r|r|r|r|r|r|r|r|r|}
\hline & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline 0 & -4 & -3 & -2 & -1 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline 1 & -5 & -4 & -3 & -2 & -1 & 0 & 3 & 8 & 15 & -24 & -35 & -48 & -63 \\
\hline
\end{array}
\end{aligned}
$$

x

Symbolic evaluation of calculus operations

Use the Calculus Toolbar button in the toolbar $\int \frac{d x}{d x}$ to produce the calculus toolbar:

The Calculus Toolbar includes buttons for limits, first- and higher-order derivatives, definite and indefinite integrals, summations, and products, as well as the infinite symbol. To calculate a symbolic (as opposite to a numerical) result, instead of using the equal sign we use the symbolic evaluation symbol \rightarrow, generated by using Cntl . (control period) in an expression. [Alternatively, the symbolic evaluation symbol (\rightarrow) can be selected from the Evaluation Toolbar (click the $x=$ button in the toolbar)]:

The symbolic evaluation symbol is the arrow located in the second row, first column of the Evaluation Toolbar shown above (\rightarrow).

The following example illustrates the symbolic evaluation of the derivative $\frac{d}{d x}\left(x^{3}-x\right)$. First, select the derivative button ($\frac{d}{d x}$) from the Calculus Toolbar. Then, type x in the lower placeholder and $\left(x^{3}+x\right)$ in the higher placeholder. Finally, enter the symbolic evaluation symbol from the Evaluation Toolbar, or by typing Cntl .. The result is shown below:

$$
\frac{d}{d x}\left(x^{3}-x\right) \rightarrow 3 \cdot x^{2}-1
$$

Using the proper symbol from the Calculus Toolbar and the symbolic evaluation symbol (\rightarrow) evaluate the following calculus operations:

- A limit that defines a derivative

$$
\lim _{h \rightarrow 0} \frac{\sin (x+h)-\sin (x)}{h} \rightarrow \cos (x)
$$

- A third-order derivative

$$
\frac{d^{3}}{d x^{3}}(\exp (-x) \cdot \cos (x)) \rightarrow(-2) \cdot e^{-x} \cdot \sin (x)+2 \cdot e^{-x} \cdot \cos (x)
$$

- An infinite sum

$$
\sum_{k=1}^{\infty} \frac{1}{k^{2}} \rightarrow \frac{1}{6} \cdot \pi^{2}
$$

- A symbolic product

$$
\prod_{r=1}^{n} x^{r} \rightarrow x^{\frac{1}{2} \cdot(n+1) \cdot n}
$$

- An indefinite integral

$$
\int \frac{1}{1+s^{2}} d s \rightarrow \operatorname{atan}(s)
$$

- A definite integral with an infinite limit

$$
\int_{0}^{\infty} \exp \left[-\left(\frac{x^{2}}{2}\right)\right] d x \rightarrow \frac{1}{2} \cdot 2^{\frac{1}{2}} \cdot \pi^{\frac{1}{2}}
$$

- A definite integral with symbolic limits

$$
\int_{\alpha}^{\beta} \frac{1}{\sqrt{\xi}} d \xi \rightarrow 2 \cdot \beta^{\frac{1}{2}}-2 \cdot \alpha^{\frac{1}{2}}
$$

In the last expression we borrowed the square-root symbol (Γ) from the Calculator Toolbar, which is activated by pressing the Calculator Toolbar button in the toolbar凅. The Calculator Toolbar is shown below. It includes symbols for trigonometric, logarithmic, and exponential functions, square root, any root, inverse, square, power,
 parentheses, and the four fundamental arithmetic operations.

Numerical evaluation of summations, products, and integrals
Summations, products, and integrals with numerical limits can be evaluated by Mathcad if we use the equal sign after the corresponding operation. Some examples are shown next. In each example we show both the numerical and the symbolic evaluation:

$$
\begin{array}{ll}
\sum_{k=1}^{10} \frac{1}{k^{2}}=1.55 & \sum_{k=1}^{10} \frac{1}{k^{2}} \rightarrow \frac{1968329}{1270080} \\
\prod_{s=2}^{5}[s \cdot(s-1)]=2.88 \times 10^{3} & \prod_{s=2}^{5}[s \cdot(s-1)] \rightarrow 2880 \\
\int_{0}^{2} \frac{1}{1+x^{2}} d x=1.107 & \int_{0}^{2} \frac{1}{1+x^{2}} d x \rightarrow \operatorname{atan}(2)
\end{array}
$$

In all the examples above the value of the operation converges to a finite result. If the operation diverges, a numerical evaluation would be inconclusive and Mathcad will provide a no-convergence message. The symbolic evaluation shows the result being infinite:

Calculus operations on user-defined functions

Users can define functions in Mathcad and subsequently use the operations in the Calculus Toolbar to calculate limits, derivatives, summations, products, and integrals. Other functions can also be defined based on those calculus operations of user-defined functions. In the following example a user-defined function $f(x)$ is used to define a second function $f p(x)=d f / d x$, and tables and plots of the two functions are produced:

$$
\begin{aligned}
& f(x):=x \cdot \exp (x) \quad f p(x):=\frac{d}{d x} f(x) \quad a:=-2 \quad b:=2 \quad n:=10 \quad \Delta x:=\frac{b-a}{n} \quad \Delta x=0.4 \\
& j:=0 . . n \quad x_{j}:=a+j \cdot \Delta x \quad y_{j}:=f\left(x_{j}\right) \quad z_{j}:=f p\left(x_{j}\right) \\
& z_{0, j}:=x_{j} \quad z_{1, j}:=y_{j} \quad Z_{2, j}:=z_{j}
\end{aligned}
$$

$Z=$| | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 0 | -2 | -1.6 | -1.2 | -0.8 | -0.4 | 0 | 0.4 | 0.8 | 1.2 |
| 1 | -0.271 | -0.323 | -0.361 | -0.359 | -0.268 | 0 | 0.597 | 1.78 | 3.984 |
| 2 | -0.135 | -0.121 | -0.06 | 0.09 | 0.402 | | 1 | 2.089 | 4.006 |

In the following example we attempt to repeat the last exercise for a multiply-defined function:

$$
\begin{aligned}
& \mathrm{f}^{\prime}(\mathrm{x}):=\text { if }\left(\mathrm{x}<0, \mathrm{x}-1, \text { if }\left(\mathrm{x}<5, \mathrm{x}^{2}-1,1-\mathrm{x}^{2}\right)\right) \quad \mathrm{fp}(\mathrm{x}):=\frac{\mathrm{d}}{\mathrm{dx}} \mathrm{f}(\mathrm{x}) \\
& a:=-4 \quad b:=8 \quad n:=12 \quad \Delta x:=\frac{(b-a)}{n} \quad \Delta x=1 \quad j:=0 . . n \quad x_{j}:=a+j \cdot \Delta x \\
& y_{j}:=f\left(x_{j}\right) \quad r_{j}:=f \mathrm{fp}\left(x_{j}\right) \quad z_{0, j}:=x_{j} \quad z_{1, j}:=y_{j} \quad z_{2, j}:=r_{j} \\
& \text { This calculation does not converge to a solution. }
\end{aligned}
$$

Notice, however, that evaluating $f p(x)=d f / d x$ in the range selected fails to converge. You can check that the problem occurs at $f p\left(x_{9}\right)$, i.e., at $x_{9}=5$. The problem is that the derivative of this function is doubly-defined at that point. Thus, with the range of values of x as defined above we cannot produce a table or a plot of the function. To avoid this problem we could re-define the range by adding, say 0.1 , to a and b, i.e.,

$$
\begin{aligned}
& f(x):=\operatorname{if}\left(x<0, x-1, \text { if }\left(x<5, x^{2}-1,1-x^{2}\right)\right) \\
& a:=-3.9 \quad b:=8.1 \quad n:=12 \quad \Delta x:=\frac{(b-a)}{n} \quad \Delta x=1 \quad j:=\frac{d}{d x} f(x) \\
& y_{j}:=f\left(x_{j}\right) \quad r_{j}:=f p\left(x_{j}\right) \quad Z_{0, j}:=x_{j} \quad z_{1, j}:=y_{j} \quad z_{2, j}:=a+j \cdot \Delta x
\end{aligned}
$$

The table of values for both $f(x)$ and $f p(x)$, as well as a plot of the two functions, is shown below:

$Z=$		0	1	2	3	4	5	6	7	8	9
0	-3.9	-2.9	-1.9	-0.9	0.1	1.1	2.1	3.1	4.1	5.1	
1	-4.9	-3.9	-2.9	-1.9	-0.99	0.21	3.41	8.61	15.81	-25.01	
2	1	1	1	1	0.2	2.2	4.2	6.2	8.2	-10.2	

X

Symbolic evaluation of derivatives in user-defined functions

If the user-defined function uses a single expression, the symbolic evaluation is straightforward (recall that we use Cntl . [control period] to produce the symbolic evaluation symbol \rightarrow):

$$
\text { g(x):= } x^{2}-1 \quad \frac{d}{d x} g(x) \rightarrow 2 \cdot x
$$

Symbolic evaluation of a multiply-defined function (using Mathcad function if) is not allowed, e.g.,

$$
f^{\prime}(x):=\text { if }\left(x<0, x-1, \text { if }\left(x<5, x^{2}-1,1-x^{2}\right)\right)
$$

One possibility is to apply the symbolic evaluation operator to each expression in the multiply defined function as illustrated below:

$$
\begin{array}{ll}
\frac{d}{d x}(x-1) \rightarrow 1 & \text { for } x<0 \\
\frac{d}{d x}\left(x^{2}-1\right) \rightarrow 2 \cdot x & \text { for } 0<x<5 \\
\frac{d}{d x}\left(1-x^{2}\right) \rightarrow(-2) \cdot x & \text { for } x>5
\end{array}
$$

Thus, the derivative function could be defined as follows:

$$
\mathrm{fp}(\mathrm{x}):=\mathrm{if}(\mathrm{x}<0,1, \text { if }(\mathrm{x}<5,2 \cdot \mathrm{x},-2 \cdot \mathrm{x}))
$$

Functions defined by summations and integrals
Consider the function $g(x)$ defined by a single expression. The following exercise shows two other functions $g s(x)$ and $g i(x)$ defined in terms of a summation and an integral of function $g(x)$. This case is straightforward. As shown below, the symbolic expressions for functions $g s(x)$ and $g i(x)$ can be easily calculated using the symbolic evaluation symbol \rightarrow :

$$
\begin{array}{ll}
g(x):=x^{2}-1 \\
g s(x):=\sum_{k=1}^{x} g(k) & \sum_{k=1}^{x} g(k) \rightarrow \frac{1}{3} \cdot(x+1)^{3}-\frac{1}{2} \cdot(x+1)^{2} . \\
g(x):=\int_{0}^{x} g(x) d t & \int_{0}^{x} g(x) d t \rightarrow x^{3}-x
\end{array}
$$

An attempt to define a function with the integral of a multiply-defined function fails:

$$
f(x):=\operatorname{if}\left(x<0, x-1, \text { if }\left(x<5, x^{2}-1,1-x^{2}\right)\right) \quad \int_{0}^{x} f(s) d s \rightarrow
$$

As we did in the case of the derivative of a multiply-defined function, we can define the symbolic integrals separately by range, i.e.,

$$
\begin{array}{ll}
\int_{0}^{x}(s-1) d s \rightarrow(-x)+\frac{1}{2} \cdot x^{2} & \text { for } x<0 \\
\int_{0}^{x}\left(s^{2}-1\right) d s \rightarrow \frac{1}{3} \cdot x^{3}-x & \text { for } 0<x<5 \\
\int_{0}^{x}\left(1-s^{2}\right) d s \rightarrow \frac{-1}{3} \cdot x^{3}+x & \text { for } x>5
\end{array}
$$

Then, we can put together the integrated function, $f s(x)$, as follows:

$$
f s(x):=i f\left[x<0,(-x)+\frac{1}{2} \cdot x^{2}, \text { if }\left(x<5, \frac{1}{3} \cdot x^{3}-x, \frac{-1}{3} \cdot x^{3}+x\right)\right]
$$

A table and graph of the two functions, $f(x)$ and $f s(x)$, are presented below:

$Z=$| | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 0 | -3.9 | -2.9 | -1.9 | -0.9 | 0.1 | 1.1 | 2.1 | 3.1 |
| 1 | -4.9 | -3.9 | -2.9 | -1.9 | -0.99 | 0.21 | 3.41 | 8.61 |
| 2 | 11.505 | 7.105 | 3.705 | 1.305 | -0.1 | -0.656 | 0.987 | 6.83 |

x

The same result can be obtained by defining the integrated function $f s(x)$ as follows:

$$
f^{\prime}(x):=\operatorname{if}\left(x<0, x-1, i f\left(x<5, x^{2}-1,1-x^{2}\right)\right) \quad f s(x):=\int_{0}^{x} f(s) d s
$$

Functions defined by a Given-Find block

This approach is useful if you need to calculate an implicit value in an equation. A typical case is the Coolebrook-White equation used to calculate the friction factor in a pipeline. The equation is given by

$$
\frac{1}{\sqrt{\mathrm{f}}}=-2 \cdot \log \left(\frac{\mathrm{e}}{3 \cdot 7 \cdot \mathrm{D}}+\frac{2.52}{\operatorname{Re} \cdot \sqrt{\mathrm{f}}}\right)
$$

Where f is the friction factor, $R e$ is the Reynolds number, e is the absolute roughness of the pipe, and D is the pipe's diameter. Due to the complex nature of the equation, it is not possible to solve for f explicitly. A Given-Find block can be used to solve for f if the values of $R e, e$, and D are known, as illustrated below:

$$
\begin{array}{ll}
\text { e: }=0.0001 \quad \mathrm{Re}:=1 \cdot 10^{7} \quad \mathrm{D}:=0.5 \\
\text { Assuming: } \quad \mathrm{f}:=0.02 \\
\text { Given } \frac{1}{\sqrt{\mathrm{f}}}=-2 \cdot \log \left(\frac{\mathrm{e}}{3.7 \cdot \mathrm{D}}+\frac{2.52}{\operatorname{Re} \cdot \sqrt{\mathrm{f}}}\right) \\
\mathrm{f}=\text { Find(f) } \quad \mathrm{f}=0.014
\end{array}
$$

It is possible to define a function ffact $(e, D, R e)$ as follows [ffact stands for friction factor]:

Initial guess for $\mathrm{f}: \quad \mathrm{f}:=0.02$ Given $\frac{1}{\sqrt{\mathrm{f}}}=-2 \cdot \log \left(\frac{\mathrm{e}}{3.7 \cdot \mathrm{D}}+\frac{2.52}{\operatorname{Re} \cdot \sqrt{\mathrm{f}}}\right) \quad$ ffact $(\mathrm{e}, \mathrm{D}, \mathrm{Re}):=$ Find (f)

A couple of evaluations of the function are shown below:

$$
\text { ffact }\left(0.001,0.25,1 \times 10^{6}\right)=0.029 \quad \text { ffact }\left(0.000001,1.5,1 \cdot 10^{5}\right)=0.018
$$

We can use function ffact to calculate the velocity of flow V in a pipe of length L, diameter D, absolute roughness e, if a fluid with kinematic viscosity v produces a head loss h_{f}. The equation to use is the Darcy-Weisbach equation defined as

$$
h_{f}=f \cdot \frac{L}{D} \cdot \frac{V^{2}}{2 g}
$$

where $f=f f a c t(e / D, R e)$, and $R e=V D / v . \quad$ To set up the equation for solution in Mathcad we can write the Darcy-Weisbach equation as:

$$
h_{f}=f f a c t\left(\frac{e}{D}, \frac{V \cdot D}{v}\right) \cdot \frac{L}{D} \cdot \frac{V^{2}}{2 g} .
$$

A solution for the velocity is shown next:

$$
\begin{aligned}
& v:=1 \times 10^{-6} \cdot \frac{\mathrm{f}^{2}}{\mathrm{~s}} \quad \mathrm{e}:=0.0001 \cdot \mathrm{ft} \quad \mathrm{D}:=0.5 \cdot \mathrm{ft} \quad \mathrm{~L}:=100 \cdot \mathrm{ft} \quad \mathrm{hf}:=10 \cdot \mathrm{ft} \\
& \text { Assume: } \quad \mathrm{V}:=2.3 \cdot \frac{\mathrm{ft}}{\mathrm{sec}} \\
& \text { Given } \\
& \mathrm{hf}=\text { ffact }\left(\frac{\mathrm{e}}{\mathrm{D}}, \frac{\mathrm{~V} \cdot \mathrm{D}}{v}\right) \cdot \frac{\mathrm{L}}{\mathrm{D}} \cdot \frac{\mathrm{v}^{2}}{2 \mathrm{~g}} \\
& \mathrm{Y}:=\text { Find(} \mathrm{V}) \quad \mathrm{V}=4.642 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{aligned}
$$

The Darcy-Weisbach equation, written in terms of the discharge Q, is

$$
h_{f}=\frac{8 f L Q^{2}}{\pi^{2} g D^{5}}=f f a c t\left(\frac{e}{D}, \frac{4 Q}{\pi v D}\right) \cdot \frac{8 L Q^{2}}{\pi^{2} g D^{5}},
$$

Where $\operatorname{Re}=4 Q /(\pi v D)$, and $Q=\left(\pi D^{2} / 4\right) V$. Solving the example given above in terms of the discharge produces the following Mathcad result:

$$
\begin{aligned}
& \begin{array}{l}
\mathrm{N}:=1 \times 10^{-6} \cdot \frac{\mathrm{f}^{2}}{\mathrm{~s}} \quad \mathrm{e}:=0.0001 \cdot \mathrm{ft} \quad \mathrm{D}:=0.5 \cdot \mathrm{ft} \quad \mathrm{~L}:=100 \cdot \mathrm{ft} \quad \mathrm{hf}:=10 \cdot \mathrm{ft} \\
\text { Assume: } \quad \mathrm{Q}:=10 \cdot \frac{\mathrm{f}^{3}}{\mathrm{sec}} \\
\text { Given } \\
\mathrm{hf}=\mathrm{ffact}\left(\frac{\mathrm{e}}{\mathrm{D}}, \frac{4 \cdot \mathrm{Q}}{\pi \cdot \mathrm{v} \cdot \mathrm{D}}\right) \cdot \frac{8 \cdot \mathrm{~L} \cdot \mathrm{Q}^{2}}{\pi^{2} \cdot g \cdot \mathrm{D}^{5}} \\
\quad \mathrm{~S}:=\mathrm{Find}(\mathrm{Q}) \quad \mathrm{Q}=0.085 \frac{\mathrm{~m}^{3}}{\mathrm{~s}} \quad \text { and } \quad \mathrm{M}:=\frac{4 \cdot \mathrm{Q}}{\pi \mathrm{D}^{2}} \quad \mathrm{~V}=4.642 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{array}
\end{aligned}
$$

Symbolic manipulation of algebraic expressions

The menu Symbolics in Mathcad contains functions for manipulation of algebraic expressions, e.g., Simplify, Expand, Factor, and Collect. To illustrate this point, type in your worksheet the expression:

$$
\frac{x^{3}-y^{3}}{x-y}
$$

Then, click on the expression and drag the mouse through it highlighting the entire expression. The expression should look like this:

Select Symbolics $>$ Simplify while the expression is highlighted. The result is a new field in the worksheet with the simplified expression, i.e.,

$$
\begin{aligned}
& \frac{x^{3}-y^{3}}{x-y} \\
& x^{2}+y \cdot x+y^{2}
\end{aligned}
$$

Using text ("), and dragging fields around the worksheet, you can document and manipulate the operation once it is performed to make it easier to follow, e.g.,

$$
\text { The fraction } \frac{x^{3}-y^{3}}{x-y} \text { simplifies to } x^{2}+y \cdot x+y^{2} \quad \text { using Symbolics>Simplify }
$$

Here are examples of the functions Expand, and Factor after manipulation (the operation of these two functions is similar to that of Simplify, presented above):

$$
\begin{aligned}
& \text { The square }(x-y)^{2} \text { expands to } x^{2}-2 \cdot y \cdot x+y^{2} \quad \text { using Symbolics }>\text { Expand } \\
& \text { The expression } x^{2} y-2 \cdot x \cdot y^{2} \quad \text { can be re-written as } \quad x \cdot y \cdot[(-2) \cdot y+x] \quad \text { using } \\
& \text { Symbolics> Factor }
\end{aligned}
$$

The commands Simplify, Expand, and Factor can be activated using the Symbolic Keyword Evaluation symbol \rightarrow, available in the Evaluation Toolbar $x=$. This symbol can also be obtained by using Cntl Shift . (control shift period). Activating the Symbolic Keyword Evaluation symbol produces the following field:

$\downarrow!\rightarrow$

This placeholder is empty.
The first placeholder (to the left) is where the expression to be operated upon is written, while the second placeholder is for the user to type the operation to be performed (i.e., simplify, expand, or factor). The preferred filling of the placeholders is from the right to the left, thus, first type the operation name, e.g., expand, and then type the expression to be expanded, e.g., $(x-y)^{2}$.

Repeating the exercises shown above with the Symbolic Keyword Evaluation symbol, we get the following results:

$$
\begin{aligned}
& \frac{x^{3}-y^{3}}{x-y} \text { simplify } \rightarrow x^{2}+y \cdot x+y^{2} \\
& (x-y)^{2} \text { expand } \rightarrow x^{2}-2 \cdot y \cdot x+y^{2} \\
& x^{2} \cdot y-2 \cdot x \cdot y^{2} \text { factor } \rightarrow x \cdot y \cdot[(-2) \cdot y+x]
\end{aligned}
$$

The command collect can be used with the Symbolic Keyword Evaluation symbol, by typing collect followed by a comma and the factor used for collecting terms. For example, in the following result we used collect, x^{2} to collect all terms with x^{2} in the expression shown:

$$
x^{2}+x^{2} \cdot y+x^{2} \cdot z+x \cdot z \text { collect }, x^{2} \rightarrow(1+y+z) \cdot x^{2}+x \cdot z
$$

To produce a vector of polynomial coefficients, use the Symbolic Keyword Evaluation symbol, typing coeffs followed by a comma and the polynomial variable. The following examples show the coefficients of four third-order polynomials:

$$
\begin{aligned}
& x^{3} \text { coeffs }, x \rightarrow\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right) \\
& x^{3}+3 \cdot x^{2} \text { coeffs }, x \rightarrow\left(\begin{array}{l}
0 \\
0 \\
3 \\
1
\end{array}\right) \\
& x^{3}+3 \cdot x^{2}-2 x \text { coeffs }, x \rightarrow\left(\begin{array}{c}
0 \\
-2 \\
3 \\
1
\end{array}\right)
\end{aligned} \quad x^{3}+3 \cdot x^{2}-2 x+2 \text { coeffs }, x \rightarrow\left(\begin{array}{c}
2 \\
-2 \\
3 \\
1
\end{array}\right)
$$

Notice that the vector of coefficients is filled vertically downwards from the lowest to the highest powers of the polynomial variable.

Roots of a polynomial

The following application illustrates the use of the polynomial coefficients operation in the calculation of the roots of a polynomial. First, the polynomial is defined as $p(x)$. Then, the polynomial coefficients are stored in variable v by using the Symbolic Keyword Evaluation symbol \rightarrow and coeffs. Finally, function polyroots is used to calculate the roots of $p(x)$:

$$
\begin{array}{ll}
p(x):=x^{4}-2 \cdot x^{3}+x^{2}-5 \cdot x+2 & v:=p(x) \text { coeffs }, x \rightarrow\left(\begin{array}{c}
2 \\
-5 \\
1 \\
-2 \\
1
\end{array}\right) \\
r:=\operatorname{polyroots}(v) & r=\left(\begin{array}{c}
-0.372+1.394 i \\
-0.372-1.394 i \\
0.412 \\
2.333
\end{array}\right)
\end{array}
$$

Notice that two of the roots of the polynomial shown above are complex numbers, namely, $-0.372+1.394 i$ and $-0.372-1.394 i$. The polynomial has two real roots, 0.412 and 2.333.

Visualizing the roots of the polynomial
To visualize the real roots, we can produce a plot of the polynomial. In the following example, we produce a range for x, namely, $x:=0,0.1 \ldots 3$ (i.e., $x:=0,0.1 ; 3$), and a range for $j:=1,2, \ldots, 4$ for the indices of r. The plot is produced with the abscissa placeholder containing x and r_{j}, and the ordinate placeholder containing $f(x)$ and $f\left(r_{j}\right)$. To highlight the roots, make sure that, after the plot is produced, the Format tabs are as shown below:

The results are shown in the next page:

$$
\mathrm{x}:=0,0.1 . .3 \quad \mathrm{j}:=1,2 . .4
$$

Symbolic solution to single equations

In this section we present two methods for the symbolic solution of single equations. The first method consists of using the Symbolic Keyword Evaluation symbol (control shift period) with the keyword solve. As an exercise, try the solution of the polynomial $x^{3}+10 x^{2}+19 x-30=0$, as follows:

1. Type Cntl Shift . (control shift period)
2. In the second placeholder type solve, x
3. In the first placeholder type the polynomial $x^{3}+10 x^{2}+19 x-30$ Cntl $=0$
4. Click outside of the expression

The result is the following:

$$
x^{3}+10 \cdot x^{2}+19 \cdot x-30=0 \text { solve }, x \rightarrow\left(\begin{array}{c}
-5 \\
1 \\
-6
\end{array}\right)=\left(\begin{array}{c}
-5 \\
1 \\
-6
\end{array}\right)
$$

This result indicates that the polynomial has the roots $x=-5, x=1$, and $x=-6$.
The second method of symbolic solution uses a Given-Find block as illustrated below:

$$
\begin{aligned}
& \text { Given } \\
& \qquad \begin{array}{l}
x^{3}+10 \cdot x^{2}+19 \cdot x-30=0 \\
\text { Find(} x) \rightarrow\left(\begin{array}{lll}
-5 & 1 & -6
\end{array}\right)
\end{array}
\end{aligned}
$$

The arrow after the Find particle is produced by typing Cntl . (control period).

Symbolic solutions need not produce numbers as results. As an example consider the equation $v^{2}=v_{0}^{2}+2 a s$. Suppose that we want to solve for the variable a. In such case, we can use one of the following approaches:

1 - Using solve:

$$
\mathrm{v}^{2}=\mathrm{v}^{2}+2 \cdot \mathrm{a} \cdot \mathrm{~s} \text { solve, } \mathrm{a} \rightarrow \frac{-1}{2} \cdot \frac{\left(-\mathrm{v}^{2}\right)+\mathrm{v}^{2}}{\mathrm{~s}}
$$

2 - Using a Given-Find block:

$$
\begin{aligned}
& \text { Given } \\
& \qquad \begin{array}{l}
v^{2}=v 0^{2}+2 \cdot a \cdot s \\
\\
\text { Find(a) } \rightarrow \frac{-1}{2} \cdot \frac{\left(-v^{2}\right)+\mathrm{v}^{2}}{\mathrm{~s}}
\end{array} .=\text {. }
\end{aligned}
$$

Symbolic solution to systems of equations

The two approaches shown above for symbolic solutions of single equations can be used for solving systems of equations, if the equations and unknowns are grouped as column vectors. Consider the following system of equations whose solutions are numbers:

$$
\binom{x^{2}+y^{2}=13}{x y=6} \text { solve, }\binom{x}{y} \rightarrow\left(\begin{array}{cc}
3 & 2 \\
2 & 3 \\
-2 & -3 \\
-3 & -2
\end{array}\right)
$$

To write this expression follow the steps shown in the first example of the previous section, except that you will need to type arrays before and after the solve particle. To enter an array, type Cntl-M and select, for this case, 2 rows and 1 column. Then replace the placeholders with equations or unknowns.

A solution of the same system of equations using a Given-Find block is shown next:

$$
\begin{aligned}
& \text { Given } \\
& \qquad \begin{array}{l}
x^{2}+y^{2}=13 \\
x \cdot y=6
\end{array} \\
& \quad \text { Find }(x, y) \rightarrow\left(\begin{array}{llll}
3 & 2 & -2 & -3 \\
2 & 3 & -3 & -2
\end{array}\right)
\end{aligned}
$$

The solutions shown above correspond to the pairs $(x, y)=(3,2),(2,3),(-2,-3),(-3,-2)$.

Symbolic solutions of systems of equations need not be numbers, as illustrated in the following example. The equations listed to the left are those for position and velocity in a uniformly-accelerated motion. The expression below uses Cntl Shift . (control shift period) and solve to solve simultaneously for $v 0$ and a :

$$
\binom{x=x 0+v 0 \cdot t-\frac{1}{2} \cdot a \cdot t^{2}}{v=v 0+a \cdot t} \text { solve, }\binom{v 0}{a} \rightarrow\left(\frac{1}{3} \cdot \frac{t \cdot v+2 \cdot x-2 \cdot x 0}{t} \frac{-2}{3} \cdot \frac{x-x 0-t \cdot v}{t^{2}}\right)
$$

The solutions to the system are: $\quad v_{0}=\frac{v t+2\left(x-x_{0}\right)}{3 t}, \quad a=-\frac{2}{3 t^{2}}\left(x-x_{0}-v t\right)$.

An alternative solution is shown next using a Given-Find block:
Given

$$
\begin{aligned}
& x=x 0+v 0 \cdot t-\frac{1}{2} \cdot a \cdot t^{2} \\
& v=v 0+a \cdot t \\
& \text { Find(v0,a) } \rightarrow\binom{\frac{1}{3} \cdot \frac{t \cdot v+2 \cdot x-2 \cdot x 0}{t}}{\frac{-2}{3} \cdot \frac{x-x 0-t \cdot v}{2}}
\end{aligned}
$$

The following example shows the solution to a system of linear equations. Since the solution is symbolic, the results are given as integers or fractions:

$$
\left(\begin{array}{c}
2 x-3 \cdot y+4 \cdot z=5 \\
5 x-2 y+z=3 \\
x+y+z=1
\end{array}\right) \text { solve, }\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \rightarrow\left(\begin{array}{lll}
\frac{11}{34} & \frac{-4}{17} & \frac{31}{34}
\end{array}\right)
$$

Given-Find blocks can be used to produce symbolic (\rightarrow) as well as numeric results (=) for systems of linear equations. The first example shows a symbolic result.

Given

$$
\begin{aligned}
& 2 \cdot x-3 \cdot y+4 \cdot z=5 \\
& 5 x-2 y+z=3 \\
& x+y+z=1 \\
& \text { Find(} x, y, z) \rightarrow\left(\begin{array}{c}
\frac{11}{34} \\
\frac{-4}{17} \\
\frac{31}{34}
\end{array}\right)
\end{aligned}
$$

A numerical result requires a first guess for the unknowns:

$$
\begin{array}{cc}
x:=6 & y:=4 \quad z:=3 \\
\text { Given } & 2 \cdot x-3 \cdot y+4 \cdot z=5 \\
5 x-2 y+z=3 \\
x+y+z=1 \\
& \text { Find(} x, y, z)=\left(\begin{array}{c}
0.324 \\
-0.235 \\
0.912
\end{array}\right)
\end{array}
$$

Working with complex numbers

To enter the unit imaginary number while typing a complex number, use $1 i$ instead of simply i, e.g., type the following complex numbers $z 1:=3-2 * 1 i$ and $z 2:=5-3 * 1 i$. The result is the following values:

$$
\mathrm{z} 1:=3-2 \cdot \mathrm{i} \quad \mathrm{z} 2:=5-3 \cdot \mathrm{i}
$$

Some basic arithmetic operations using these complex numbers are shown below:

$$
\begin{array}{ll}
\mathrm{z} 1:=3-2 \cdot \mathrm{i} & \mathrm{z} 2=5-3 \cdot \mathrm{i} \\
\mathrm{z} 1+\mathrm{z} 2=8-5 \mathrm{i} & \mathrm{z} 1-\mathrm{z} 2=-2+\mathrm{i} \\
\mathrm{z} 1 \cdot \mathrm{z} 2=9-19 \mathrm{i} & \frac{\mathrm{z} 1}{\mathrm{z} 2}=0.618-0.029 \mathrm{i} \\
\frac{1}{\mathrm{z} 1}=0.231+0.154 \mathrm{i} & \mathrm{zz}^{2}=16-30 \mathrm{i}
\end{array}
$$

Trigonometric, exponential, and logarithmic functions can be applied to complex numbers, e.g.,

$$
\begin{array}{ll}
\sin (z 1)=0.531+3.591 \mathrm{i} & \operatorname{acos}(z Z)=0.547+2.453 \mathrm{i} \\
\exp (z 1)=-8.359-18.264 \mathrm{i} & \ln (z Z)=1.763-0.54 \mathrm{i}
\end{array}
$$

The absolute value function (use |) provides the modulus of a complex number, whereas function arg provides the argument. Functions Re and Im represent the real and imaginary parts of a complex number. To calculate a complex conjugate, type the complex variable name (or complex number), and press ". Some examples are shown below:

$$
\begin{array}{ll}
|z 1|=3.606 & \arg (z 1)=-0.588 \\
\operatorname{Re}(z 1)=3 & \operatorname{Im}(z 1)=-2 \\
\overline{z 1}=3+2 \mathrm{i} & \overline{z 2}=5+3 \mathrm{i}
\end{array}
$$

A complex number of modulus r and argument θ, can be written as $z=r e^{i \theta}$. This is referred to as the polar representation of the complex number, as opposite to the Cartesian representation, $z=x+i y$. The following example shows the definition of a complex number in polar representation and its equivalent Cartesian representation:

$$
z 3:=2.5 \cdot e^{\frac{-i \pi}{6}} \quad z 3=2.165-1.25 i
$$

Complex solutions to equations

If an equation has a complex solution, it is possible to use a Given-Find block, with a complex initial guess, to find that solution. This is illustrated with the following examples:

$$
\begin{aligned}
& x:=1+i \\
& \text { Given } \\
& \quad x^{2}-4 \cdot x+13=0 \\
& \quad x:=\operatorname{Find}(x) \quad x=2-3 i
\end{aligned}
$$

Graphics of matrices (example using complex functions)
A complex variable is the variable $z=x+i y=r e^{i \theta}$. A function of a complex variable $F(z)$ is also a complex variable, and so it can be written as

$$
F(z)=\phi(x, y)+i \psi(x, y)=\phi(r, \theta)+i \psi(r, \theta)
$$

The following exercise shows how to plot the real and imaginary part of the complex function $F(z)=z^{1 / 2}$, by creating a grid of values in x and y. The values of x and y generated below are vectors, which are used to put together a matrix of values

$$
z_{i, j}=x_{i}+i y_{j} .
$$

The values of the complex function are stored in $\Phi_{i, j}=F\left(z_{i, j}\right)$. The values of $\phi_{i, j}$ and $\psi_{i, j}$ are matrices containing the real and imaginary parts of $\Phi_{i, j}$.

$$
\begin{aligned}
& F(z):=z^{\frac{1}{2}} \\
& \mathrm{~N}:=50 \mathrm{M}:=\mathrm{N} \quad \mathrm{X}_{\min }:=-5 . \quad \mathrm{X}_{\max }:=5 . \quad \mathrm{Y}_{\min }:=\mathrm{X}_{\min } \quad \mathrm{Y}_{\max }:=\mathrm{X}_{\max } \\
& \Delta x:=\frac{X_{\text {max }}-X_{\text {min }}}{N} \quad \Delta x=0.2 \quad \Delta y:=\frac{Y_{\text {max }}-Y_{\text {min }}}{M} \quad \Delta y=0.2 \\
& i:=0 . . N \quad x_{i}:=X_{\min }+i \cdot \Delta x \quad j:=0 . . M \quad y_{j}:=Y_{\text {min }}+j \cdot \Delta y \\
& z_{i, j}:=x_{i}+y_{j}{ }^{i} \quad \Phi_{\text {呙, }} j=F\left(z_{i, j}\right) \quad \phi_{i, j}:=\operatorname{Re}\left(\Phi_{i, j}\right) \quad \Psi_{i, j}:=\operatorname{Im}\left(\Phi_{i, j}\right)
\end{aligned}
$$

To visualize these values we can use either a surface plot or a contour plot 圈. These plots are available from the Graph Toolbar which can be activated by pressing the Graph Toolbar button in the Mathcad toolbar $\frac{t r}{t}$. These two graphs have a single placeholder. Type the name of the matrix to be plotted in that placeholder. The figures below show the real part, ϕ, and the imaginary part, ψ, of the complex function $F(z)$ in the form of surface plots.

The same data is plotted next using contour plots:

申

ψ

Visualization of potential flows using complex functions

In the description of potential flow, a function such as $F(z)$ is referred to as a complex potential (or complex velocity potential), $\phi(x, y)$ is the velocity potential, and $-\psi(x, y)$. The contours of $\phi(x, y)$ represents the equipotential lines of the flow, while the contours of represent the streamlines of the flow. The combination of these two plots represents the flow net of this flow. To produce a flow net, produce a contour plot and type ϕ, ψ in the placeholder. The first version of the plot would actually show a contour plot combined with a surface plot, e.g.,

$$
\phi, \psi
$$

To produce a double contour plot, click on the plot, do a right-click and select the Properties option. In the resulting form, click on the Plot 2 tab, and select Contour Plot, then press the [OK] button. The resulting graph is the flow net of the flow corresponding to the complex potential $F(z)=z^{1 / 2}$.

ϕ, ψ

Vector field plot for flow velocities from a complex function

The function $w=d F / d z$ is referred to as the complex velocity, and is such that $w=-u+i v$, where u and v are the velocity components of the flow. The following commands use the Vector Field Plot button ($\frac{\Sigma_{\pi}^{\pi} \pi}{x}$), in the Graph Toolbar. The grid for the vector field was generated in a similar fashion to that used in the previous exercise, but reducing the values of M and N to 10 . The complex velocity matrix is $\omega_{\mathrm{i}, \mathrm{j},}$, and it's calculated using the negative complex conjugate of $w(z)$. The function used for this case was $F(x):=z^{2}$.

$$
w(z):=\frac{d}{d z} F(z) \quad \omega_{i, j}:=w\left(z_{i, j}\right) \quad \omega_{i, j}:=-\overline{\omega_{i, j}}
$$

ω

A combined plot consisting of the contour plot of $f(x, y)$ superimposed to the velocity field is shown next. Notice that the streamlines are tangential to the velocity vectors:

ψ, ω

Additional matrix plots

While the examples shown above were derived from complex functions, matrices can created by typing in values into an array. To define matrices use the Vector and Matrix Toolbar activated with the Vector and Matrix Toolbar button in the toolbar [:: $[:$. Within this toolbar press the Matrix or Vector button [:": $]$. Select a matrix with 6 rows and six columns assigned to a variable M and enter the values shown below (or other values, if you want). Then, define a matrix $N=2 M-3$. Use the surface plot and contour plot buttons in the Graph Toolbar to produce the plots shown below.

A matrix of velocity vectors can be defined by using $V=M+N^{*} 1 i$. A plot of the velocity vectors is produced by using the Vector Field Plot button in the Graph Toolbar:

$$
\mathrm{X}:=\mathrm{M}+\mathrm{N} \cdot \mathrm{j}
$$

v

A second example of a vector field plot is presented next. Velocity components $u(x, y)$ and $v(x, y)$ are given, and arrays of values of x and y are generated to populate a grid in the $x-y$ plane. Velocity vectors $U_{i, j}$ and $V_{i, j}$ are generated as

$$
U_{i, j}=u\left(x_{i} y_{j}\right) \text { and } V_{i, j}=v\left(x_{i} y_{j}\right) .
$$

To plot the vectors it is necessary to create a complex matrix

$$
W_{i, j}=U_{i, j}+i V_{i, j} .
$$

Then, a Vector Field Plot is generated by typing W in the graph placeholder:

$$
\begin{aligned}
& u(x, y):=x+y \quad V(x, y):=x-y \\
& \mathrm{a}:=-5 \quad \mathrm{~b}:=5 \quad \mathrm{n}:=10 \quad \Delta \mathrm{x}:=\frac{\mathrm{b}-\mathrm{a}}{\mathrm{n}} \quad \Delta \mathrm{x}=1 \quad \mathrm{i}:=0 . . \mathrm{n} \quad \mathrm{x}_{\mathrm{i}}:=\mathrm{a}+\mathrm{i} \cdot \Delta \mathrm{x} \\
& c:=-5 \quad d:=5 \quad m:=10 \quad \Delta y:=\frac{d-c}{m} \quad \Delta y=1 \quad j:=0 . . n \quad y_{j}:=c+j \cdot \Delta y \\
& U_{i, j}:=u\left(x_{i}, y_{j}\right) \quad V_{i, j}:=v\left(x_{i}, y_{j}\right) \quad W_{i, j}:=U_{i, j}+i \cdot V_{i, j}
\end{aligned}
$$

W

Entering data into a matrix

Suppose that we are going to bring in into Mathcad data from a text file. Say that the data is available as a matrix in the text file elevation.txt, which looks as follows:

The easiest way to enter data is to use the Data Import Wizard (Insert>Data> Data Import Wizard). The resulting input form is the following (after browsing for file $c:$ lelevation.txt). Press the [Next] button three times to go through a number of options for reading the file. Then press the [Finish] button. The result is shown below.

』: $:$| | 0 | 1 | 2 | 3 | 4 | 5 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| 0 | 1.2 | 2.3 | 3.5 | 4.2 | 5.1 | 6.4 |
| 1 | 2.3 | 4.5 | 4.2 | 5.6 | 6.7 | 8.2 |
| 2 | 2.6 | 4.8 | 4.9 | 5.8 | 7.2 | 9.8 |
| 3 | 3.4 | 4.9 | 5.1 | 6.5 | 8.2 | 9.2 |
| 4 | 5.6 | 5.5 | 6.7 | 8.2 | 6.8 | 8.2 |
| 5 | 4.3 | 4.5 | 5.6 | 7.2 | 8.6 | 7.2 |

Type M into the placeholder to make an assignment to a matrix M.

$\mathrm{M}:=$| | 0 | 1 | 2 | 3 | 4 | 5 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| 0 | 1.2 | 2.3 | 3.5 | 4.2 | 5.1 | 6.4 |
| 1 | 2.3 | 4.5 | 4.2 | 5.6 | 6.7 | 8.2 |
| 2 | 2.6 | 4.8 | 4.9 | 5.8 | 7.2 | 9.8 |
| 3 | 3.4 | 4.9 | 5.1 | 6.5 | 8.2 | 9.2 |
| 4 | 5.6 | 5.5 | 6.7 | 8.2 | 6.8 | 8.2 |
| 5 | 4.3 | 4.5 | 5.6 | 7.2 | 8.6 | 7.2 |

Once entered into memory, the data can be manipulated or plotted as needed. Surface and contour plots of matrix M are shown below:

M

M

Operations with matrices
The Vector and Matrix toolbar contains some functions that can be used to manipulate matrices.

Matrix	区
[:\%] \times_{n}	
$\overrightarrow{\mathrm{f}}(\mathrm{M}) \mathrm{m}^{\text {¢ }}$	
$\stackrel{\rightharpoonup}{\mathrm{x}} \cdot \stackrel{\rightharpoonup}{\mathrm{y}} \stackrel{\rightharpoonup}{\mathrm{k}} \times \overrightarrow{\mathrm{y}}$	

For example, for the matrix M, entered above from file elevation.txt, we can use function M^{T} to calculate the transpose of the matrix, or function M^{\gg} to extract columns of the matrix:

$$
\mathrm{M}^{\mathrm{T}}=\left(\begin{array}{cccccc}
1.2 & 2.3 & 2.6 & 3.4 & 5.6 & 4.3 \\
2.3 & 4.5 & 4.8 & 4.9 & 5.5 & 4.5 \\
3.5 & 4.2 & 4.9 & 5.1 & 6.7 & 5.6 \\
4.2 & 5.6 & 5.8 & 6.5 & 8.2 & 7.2 \\
5.1 & 6.7 & 7.2 & 8.2 & 6.8 & 8.6 \\
6.4 & 8.2 & 9.8 & 9.2 & 8.2 & 7.2 \\
3.2 & 4.2 & 6.5 & 9.8 & 8.9 & 6.5 \\
4.8 & 5.1 & 6.1 & 7.2 & 8.2 & 4.2
\end{array}\right) \quad \mathrm{M}^{\langle 3\rangle}=\left(\begin{array}{c}
4.2 \\
5.6 \\
5.8 \\
6.5 \\
8.2 \\
7.2
\end{array}\right) \quad \mathrm{M}^{\langle 5\rangle}=\left(\begin{array}{c}
6.4 \\
8.2 \\
9.8 \\
9.2 \\
8.2 \\
7.2
\end{array}\right)
$$

In the following exercise, we store the transpose matrix in variable $M T$ and extract columns of matrix MT:

$$
\mathrm{MT}:=\mathrm{M}^{\mathrm{T}} \quad \mathrm{MT}^{\langle 3\rangle}=\left(\begin{array}{c}
3.4 \\
4.9 \\
5.1 \\
6.5 \\
8.2 \\
9.2 \\
9.8 \\
7.2
\end{array}\right) \quad \mathrm{MT}^{\langle 5\rangle}=\left(\begin{array}{c}
4.3 \\
4.5 \\
5.6 \\
7.2 \\
8.6 \\
7.2 \\
6.5 \\
4.2
\end{array}\right)
$$

Determinants and inverse matrices are only applicable to square matrices. In the following exercise we define a square matrix A and calculate its matrix inverse $\left(\mathrm{X}^{-1}\right)$ and its determinant $|\mathrm{X}|$:

$$
A:=\left(\begin{array}{ccc}
1 & -2 & 4 \\
6 & -3 & 2 \\
-8 & 9 & 1
\end{array}\right) \quad A^{-1}=\left(\begin{array}{ccc}
-0.147 & 0.266 & 0.056 \\
-0.154 & 0.231 & 0.154 \\
0.21 & 0.049 & 0.063
\end{array}\right) \quad|A|=143
$$

Addition, subtraction, and multiplication of matrices are illustrated in the following examples:

$$
\begin{array}{lll}
A:=\left(\begin{array}{ccc}
1 & -2 & 4 \\
6 & -3 & 2 \\
-8 & 9 & 1
\end{array}\right) & B:=\left(\begin{array}{ccc}
3 & -4 & 2 \\
8 & -2 & -5 \\
4 & 2 & 0
\end{array}\right) & A+B=\left(\begin{array}{ccc}
4 & -6 & 6 \\
14 & -5 & -3 \\
-4 & 11 & 1
\end{array}\right) \\
A-B=\left(\begin{array}{ccc}
-2 & 2 & 2 \\
-2 & -1 & 7 \\
-12 & 7 & 1
\end{array}\right) & A \cdot B=\left(\begin{array}{ccc}
3 & 8 & 12 \\
2 & -14 & 27 \\
52 & 16 & -61
\end{array}\right) & B \cdot A=\left(\begin{array}{ccc}
-37 & 24 & 6 \\
36 & -55 & 23 \\
16 & -14 & 20
\end{array}\right)
\end{array}
$$

For term-by-term operations, use the Vectorize function $\left(\begin{array}{l}(\overrightarrow{t M})\end{array}\right)$, e.g.,

$$
\overrightarrow{(A+B)}=\left(\begin{array}{ccc}
4 & -6 & 6 \\
14 & -5 & -3 \\
-4 & 11 & 1
\end{array}\right) \quad \overrightarrow{(A \cdot B)}=\left(\begin{array}{ccc}
3 & 8 & 8 \\
48 & 6 & -10 \\
-32 & 18 & 0
\end{array}\right) \quad \overrightarrow{(A-B)}=\left(\begin{array}{ccc}
-2 & 2 & 2 \\
-2 & -1 & 7 \\
-12 & 7 & 1
\end{array}\right)
$$

Matrices used in the solution of systems of linear equations
Given the set of linear equations

$$
\begin{gathered}
x-2 y+4 z=22 \\
6 x-3 y+2 z=17 \\
-8 x+9 y+z=42
\end{gathered}
$$

it is possible to write the matrix equation $\mathbf{A x}=\mathbf{b}$, where the matrix \mathbf{A} and the column vector \mathbf{b} are defined as follows using Mathcad:

$$
A:=\left(\begin{array}{ccc}
1 & -2 & 4 \\
6 & -3 & 2 \\
-8 & 9 & 1
\end{array}\right) \quad b:=\left(\begin{array}{c}
22 \\
17 \\
42
\end{array}\right)
$$

The solution of the matrix equation is calculated using $\mathbf{x}=\mathbf{A}^{-1} \mathbf{b}$. Using Mathcad:

$$
\mathrm{x}:=\mathrm{A}^{-1} \cdot \mathrm{~b} \quad \mathrm{x}=\left(\begin{array}{c}
3.636 \\
7 \\
8.091
\end{array}\right)
$$

Thus, the solution is $x=3.636, y=7, z=8.091$. To verify the solution, try:

$$
\text { xcheck :=A•x } \quad \text { xcheck }=\left(\begin{array}{c}
22 \\
17 \\
42
\end{array}\right)
$$

Eigenvalues and eigenvectors of a square matrix

Functions eigenvals(A) and eigenvecs(\mathbf{A}) are used to calculate the eigenvalues, λ, and eigenvectors, \boldsymbol{x}, of a matrix \mathbf{A}. The eigenvalue problem is described by $\mathbf{A x}=\lambda \mathbf{x}$. An example of eigenvalues and eigenvectors calculation is shown below. The result from the eigenvecs function is a matrix with eigenvectors in its columns.

$$
A:=\left(\begin{array}{ccc}
1 & -2 & 4 \\
-2 & -3 & 2 \\
4 & 2 & 1
\end{array}\right) \quad \text { eigenvals }(A)=\left(\begin{array}{c}
-5.828 \\
5 \\
-0.172
\end{array}\right) \quad \text { eigenvecs }(A)=\left(\begin{array}{ccc}
0.5 & 0.707 & -0.5 \\
0.707 & 0 & 0.707 \\
-0.5 & 0.707 & 0.5
\end{array}\right)
$$

These results indicate that the eigenvalues and eigenvectors of the matrix A shown above are:

$$
\begin{gathered}
\lambda_{1}=-5.828, \mathbf{x}_{1}=[0.5,0.707,-0.5], \\
\lambda_{2}=5, \mathbf{x}_{2}=[0.707,0,0.707], \text { and } \\
\lambda_{3}=-0.172, \mathbf{x}_{3}=[-0.5,0.707,0.5] .
\end{gathered}
$$

The generalized eigenvector problem is defined by $\mathbf{A x}=\lambda \mathbf{B x}$, where \mathbf{A} and \mathbf{B} are square matrices of the same dimensions. Mathcad provides functions genvals and genvecs to calculate the eigenvalues and eigenvectors, respectively, of the generalized problem. Consider the following example:

$$
\begin{array}{ll}
A:=\left(\begin{array}{ccc}
1 & -2 & 4 \\
-2 & -3 & 2 \\
4 & 2 & 1
\end{array}\right) & B:=\left(\begin{array}{ccc}
3 & -1 & 5 \\
-9 & 0 & 4 \\
2 & -1 & 4
\end{array}\right) \\
\text { genvals }(A, B)=\left(\begin{array}{c}
-0.038 \\
0.661 \\
-15.161
\end{array}\right) & \text { genvecs }(A, B)=\left(\begin{array}{ccc}
-0.669 & 0.358 & 0.06 \\
1 & 0.257 & 1 \\
0.664 & 1 & 0.18
\end{array}\right)
\end{array}
$$

These results indicate that the eigenvalues and eigenvectors for the generalized problem with matrices \mathbf{A} and \mathbf{B} as shown above are:

$$
\begin{gathered}
\lambda_{1}=-0.038, \mathbf{x}_{1}=[-0.669,0.358,0.06], \\
\lambda_{2}=0.661, \mathbf{x}_{2}=[0.358,0.257,1], \text { and } \\
\lambda_{3}=-15.161, \mathbf{x}_{3}=[0.06,1,0.18] .
\end{gathered}
$$

Operations with vectors

Besides the addition, subtraction, and matrix multiplications, vector operations include the dot product $\left(\begin{array}{c}\vec{\star} \cdot \stackrel{\rightharpoonup}{\gamma}\end{array}\right)$, and the cross product ($\left.{ }^{\stackrel{\rightharpoonup}{*} \times \hat{\imath}}\right)$ for three-dimensional vectors. Some vector operations are illustrated below. The absolute value operation produces the length of the vector. (Make sure that you don't use the Determinant $(|\mathrm{x}|)$ operation from the Matrix and Vector toolbar.) The operation $\Sigma \mathrm{v}$ represents the sum of elements of the vector.

$$
\begin{array}{lll}
\mathrm{u}:=\left(\begin{array}{c}
-3 \\
2 \\
5
\end{array}\right) \quad \mathrm{v}:=\left(\begin{array}{c}
2 \\
-2 \\
3
\end{array}\right) & \mathrm{u}+\mathrm{v}=\left(\begin{array}{c}
-1 \\
0 \\
8
\end{array}\right) & \mathrm{u}-\mathrm{v}=\left(\begin{array}{c}
-5 \\
4 \\
2
\end{array}\right) \quad|\mathrm{u}|=6.164 \\
\mathrm{v} \mid=4.123 \\
\mathrm{u} \cdot \mathrm{v}=5 & \mathrm{u} \times \mathrm{v}=\left(\begin{array}{c}
16 \\
19 \\
2
\end{array}\right) & \sum \mathrm{v}=3
\end{array}
$$

Operations with elements of matrices and vectors

Use sub-indices to extract elements of matrices and vectors. Sub-indices can be entered by using the sub-index button (\mathbf{x}_{2}) or by using [after the variable name. Some examples of operations on elements of matrices and vectors are shown below, using the matrices A and B, and the vectors u and v, described above:

$$
\mathrm{A}_{1,2}=2 \quad \mathrm{~B}_{2,2}+\mathrm{A}_{2,1}=6 \quad \mathrm{u}_{1}+\mathrm{v}_{2}=5 \quad \mathrm{~B}_{0,1}+\mathrm{A}_{0,0}=0
$$

Recall that, by default, indices in Mathcad start at 0, rather than 1. [Note: To change the origin of array indices to 1 , type ORIGIN: $=1$ before using the array.]

Data fitting using vectors (linfit)

The following example shows the fitting of discharge (Q) and head (H) data to a quadratic equation of the form $H=a+b Q+c Q^{2}$, given three data points as shown in the worksheet. The values of Q and H are entered as column vectors. Function $F(Q)$ is a vector function showing the functions whose linear combination will produces the fitting function sought. The data fitting is obtained by using function linfit. This function requires the following arguments: the vector of values of the independent variable Q, the vector of values of the dependent variable H, and the vector of functions $F(Q)$. The coefficients that accompany each function in $F(Q)$ are obtained by using

$$
\mathrm{S}:=\operatorname{linfit}(\mathrm{Q}, \mathrm{H}, \mathrm{~F})
$$

The function to be used for calculations is obtained by using $h(Q):=F(Q) \cdot S$. A plot of the original data and the fitted data is also shown to verify the fitting.

Determination of the $\mathrm{H}-\mathrm{Q}$ equation for a centrifugal pump. Q in gpm, H in ft .

 Data from Figure 12-23, Water Resources Engineering, Linsley and Franzini.Data: ind.var.: dep.var.: fitting functions: obtain constants: $\mathrm{k}:=0 . .2$
$\mathrm{Q}:=\left(\begin{array}{c}0.0 \\ 500.0 \\ 1000.0\end{array}\right) \quad \mathrm{H}:=\left(\begin{array}{c}160.0 \\ 140.0 \\ 60.0\end{array}\right) \quad \mathrm{F}(\mathrm{Q}):=\left(\begin{array}{c}1 \\ \mathrm{Q} \\ \mathrm{Q}^{2}\end{array}\right) \quad \mathrm{S}:=\operatorname{linfiti}(\mathrm{Q}, \mathrm{H}, \mathrm{F}) \quad \mathrm{S}=\left(\begin{array}{c}160 \\ 0.02 \\ -1.2 \times 10^{-4}\end{array}\right)$
Recover function $\mathrm{h}(\mathrm{q})$:
Equation: $\quad \mathrm{H}(\mathrm{ft})=160+0.02 \cdot \mathrm{Q}(\mathrm{gpm})-1 \cdot 2 \cdot 10^{-4} \cdot(\mathrm{Q}(\mathrm{gpmi}))^{2}$
$\mathrm{h}(\mathrm{Q}):=\mathrm{F}(\mathrm{Q}) \cdot \mathrm{S}$

Plot $\mathrm{h}-\mathrm{q}$ original data and fitted quadratic equation:

$$
N:=10 \quad q_{\max }:=1000.0 \quad \Delta q:=\frac{q_{\max }}{N} \quad j:=0 . . N \quad q_{j}:=j \cdot \Delta q \quad \quad h_{j}:=h\left(q_{j}\right) \quad+
$$

As a second example of application of linfit consider fitting $x-y$ data to a power function of the form

$$
y=a x^{b} .
$$

Since linfit requires a linear combination of functions, we could take logarithms of the equation and write it as

$$
\ln (y)=\ln (a)+b \ln (x) .
$$

Thus, a linear fitting for this case would be the function $Y=A+b \ln (x)$, with $A=\ln (a)$ and $Y=\ln (y)$. The following Mathcad demonstrate the use of function linfit to recover a power function:

Curve interpolation with splines

Mathcad provides functions cspline, pspline, and lspline to perform cubic, parabolic, or linear spline interpolation. These functions require vectors of data x and y as arguments, and return a vector of coefficients for the splines. In the following example, we use cubic splines, and calculate the spline coefficient vector $v s:=\operatorname{cspline}(x, y)$.

Function interp is used to interpolate data out of the fitted splines. The call to interp is $\operatorname{interp}(v s, x, y, x r e f)$, which returns the interpolated value of y at $x=x r e f$. The example below shows also how to use function interp to plot the fitted cubic splines:

The reader is invited to repeat this exercise using the parabolic (pspline) and linear (lspline) spline fittings. The graph below shows all three spline fittings and the original data in the same set of axes:

Surface interpolation with splines
Functions cspline, pspline, and lspline can be used to interpolate spline surfaces by using, for example, the call $\operatorname{cspline}(M, z)$, where M is an $n x 2$ matrix describing the $x-y$ grid, and z is an $n \times n$ matrix describing the surface values to be fitted. Columns 1 and 2 of matrix M represent the values of x and y defining the grid upon which the values of z are defined, i.e., $z_{i, j}=f\left(x_{i} y_{j}\right)$. An example of spline surface interpolation is shown below:

$$
\mathrm{M}:=\left(\begin{array}{ll}
1 & 1 \\
2 & 2 \\
3 & 3
\end{array}\right) \quad \mathrm{z}:=\left(\begin{array}{lll}
2 & 3 & 5 \\
3 & 4 & 6 \\
2 & 1 & 3
\end{array}\right) \quad \mathrm{vc}:=\operatorname{cspline}(\mathrm{M}, \mathrm{z})
$$

Simple linear data fitting

Given vectors of data x and y of the same length, a plot of y-vs- x could suggest a linear relationship of the form $y=m x+b$. In order to calculate the slope (m) and the intercept (b) for the linear data fitting, Mathcad provides functions slope and intercept, i.e.,

$$
m:=\operatorname{slope}(x, y), b:=\operatorname{intercept}(x, y)
$$

A function $y p(x):=m * x+b$ can be defined to produce the data fitting.
The following example shows the calculation and graph of a linear data fitting for forcedeformation data. First, the data is entered and a plot of the data is produced to check for
a linear relationship. Subsequently, Mathcad functions slope and intercept are used to calculate the parameters of the linear fitting. Finally, a plot of the original and fitted data is produced.

$$
\begin{aligned}
& \text { Fitting force-deformation data, } d=m^{*} F+b, F(l b), d(1 / 100 \text { inch }) \\
& \mathrm{F}_{\mathrm{N}}:=\left(\begin{array}{c}
3.5 \\
5.7 \\
11.2 \\
23.5 \\
42.8 \\
56.3
\end{array}\right) \quad \mathrm{d}:=\left(\begin{array}{c}
15.2 \\
28.4 \\
29.1 \\
63.2 \\
85.6 \\
140.0
\end{array}\right) \\
& \begin{array}{ll}
\mathrm{m}:=\operatorname{slope}(\mathrm{F}, \mathrm{~d}) & \mathrm{m}=2.14 \\
\mathrm{~b}:=\operatorname{intercept}(\mathrm{F}, \mathrm{~d}) & \mathrm{b}=9.243 \\
\mathrm{dp}(\mathrm{~F}):=\mathrm{m} \cdot \mathrm{~F}+\mathrm{b} &
\end{array} \\
& +
\end{aligned}
$$

As a second example of application of functions slope and intercept consider fitting $x-y$ data to an exponential function of the form

$$
y=a e^{b x}
$$

This equation can be linearized by taking logarithms of both sides, i.e.,

$$
\ln (y)=\ln (a)+b x
$$

Thus, a linear fitting for this case would be the function $Y=A+b x$, with $A=\ln (a)$ and Y $=\ln (y)$. Thus, for this case,

$$
\begin{gathered}
b:=\operatorname{slope}(x, \ln (y)) \\
A:=\operatorname{intercept}(x, \ln (y)) .
\end{gathered}
$$

An example of fitting an exponential distribution is shown next:

Solution of first-order ordinary differential equations

A first-order ordinary differential equation (ODE) is an expression of the form

$$
y^{\prime}(t)=f(t, y(t)),
$$

subject to the initial condition $y\left(t_{0}\right)=y_{0}$. An ODE of this type can be solved with function Odesolve, within a Given block, as illustrated in the following example. Notes: To enter the prime symbol in this case, use Cntl F7. Also, use Cntl = for the Boolean equal sign:

$$
\text { Given data: } \quad f^{\prime}(t, y):=\frac{1}{y^{2}}+\sin (t) \quad \text { to } 0:=0 \quad y 0:=1
$$

End solution at: $\quad \mathrm{tf}:=25 \quad$ Number of points in solution: $\mathrm{n}:=1000$
Given

$$
\begin{aligned}
& y^{\prime}(t)=f^{\prime}(t, y(t)) \quad y(t 0)=y 0 \\
& y:=\text { Odesolve(}(t, t f)
\end{aligned}
$$

The solution is available for evaluation, e.g.,

$$
\mathrm{y}(1)=1.975 \quad \mathrm{y}(2)=3.094
$$

or, it can be plotted as shown next:

Other functions for the solution of ODEs are rkfixed, rkadapt, and radau. The first two are Runge-Kutta solutions, one with fixed steps and one with adaptive steps, and the last one is used for stiff ODE systems.

Next, we illustrate the use of function rkfixed for numerical solution of a first-order ODE. Function rkfixed is called using

$$
S:=r k f i x e d(Y 0, t 0, t f, n, D)
$$

where $Y 0$ is a vector of initial conditions, $t 0$ and $t f$ are the initial and ending values of the independent variable, n is the number of steps in the solution, and $D(t, Y)$ is the derivative function given in terms of the independent variable t and a number of unknown derivatives Y. The equation is set up as $d Y / d t=D(t, Y)$, subject to $Y(t 0)=Y 0$. This description assumes that the solution Y is a vector of values $y(t), y^{\prime}(t), y^{\prime \prime}(t)$, etc. This set up corresponds to the solution of an ODE of any order that has been transformed to a system of first-order ODEs. This approach will be illustrated below. Here, we show how to set up and solve the problem solved above with Odesolve, but now solved with rkfixed.

The following results show the setting up of the solution, and the use of function rkfixed to produce the solution matrix S. The values of t get stored into $T=$ first column (0) of S, while the solution y is contained in the second column (1) of S.

$$
\begin{aligned}
& D(t, y):=\left(\frac{1}{y^{2}}\right)+\sin (t) \quad \mathrm{y} 0:=1 \quad \text { t0 }:=0 \quad \mathrm{tf}:=25 \quad \mathrm{n}:=100 \\
& S:=\mathrm{rlfixec}(\mathrm{y} 0, \mathrm{t} 0, \mathrm{tf}, \mathrm{n}, \mathrm{D}) \\
& \mathrm{T}:=\mathrm{S}^{(0)} \quad Y:=\mathrm{S}^{(1)}
\end{aligned}
$$

A plot of the solution is shown next:

The following table, generated using transposes of matrix S, shows the first solution steps. The remaining of the solution can be seen by clicking on the table and scrolling to the right.

$\mathrm{S}^{\mathrm{T}}=$		0	1	2	3	4	5	6	7	8	9
	0	0	0.25	0.5	0.75	1	1.25	1.5	1.75	2	2.25
	1	1	1.233	1.463	1.709	1.975	2.256	2.544	2.828	3.094	3.331

Solving a second-order ODE with rkfixed

A second-order ODE of the form $y^{\prime \prime}(t)+a y^{\prime}(t)+b y(t)=g(t)$, subject to the initial conditions $y(t 0)=y 0$ and $y^{\prime}(t 0)=y 0^{\prime}$, can be re-written in terms of a vector of unknowns U defined as follows: Let $u_{1}(t)=y(t)$, and $u_{2}(t)=y^{\prime}(t)$, then

$$
\begin{aligned}
& u_{1}^{\prime}(t)=y^{\prime}(\mathrm{t})=u_{2}(t), \\
& u_{2}^{\prime}(t)=y^{\prime \prime}(\mathrm{t})=g(t)-a u_{2}(t)-b u_{1}(t) .
\end{aligned}
$$

In vector-matrix form, this is written as

$$
\frac{d}{d t}\left[\begin{array}{l}
u_{1}(t) \\
u_{2}(t)
\end{array}\right]=\left[\begin{array}{cc}
0 & 1 \\
-b & -a
\end{array}\right] \cdot\left[\begin{array}{l}
u_{1}(t) \\
u_{2}(t)
\end{array}\right]+\left[\begin{array}{c}
0 \\
g(t)
\end{array}\right]
$$

We can now define the following vectors and matrices:

$$
U(t)=\left[\begin{array}{l}
u_{1}(t) \\
u_{2}(t)
\end{array}\right] \quad A=\left[\begin{array}{cc}
0 & 1 \\
-b & -a
\end{array}\right] \quad G(t)=\cdot\left[\begin{array}{c}
0 \\
g(t)
\end{array}\right],
$$

With the ODE system to be solved now being

$$
U^{\prime}(t)=A U(t)+G(t)=\mathrm{D}(\mathrm{t}, \mathrm{U}(\mathrm{t}))
$$

Subject to

$$
\mathrm{U}(\mathrm{t} 0)=\mathrm{U} 0=\left[\mathrm{y} 0, \mathrm{y} 0^{\prime}\right]^{\mathrm{T}} .
$$

This system can be solved with $r k f i x e d$ as $S:=r k f i x e d(U 0, t 0, t f, n, D)$.
Consider the following case in which $a=2, b=1, t 0=0, y 0=0, y 0^{\prime}=1$, and $g(t)=$ $\sin (t)$. The following results show the solution of the differential equation

$$
y^{\prime \prime}(t)+2 y^{\prime}(t)+y(t)=\sin (t), y(0)=0, y^{\prime}(0)=1
$$

The first column of S represents the independent variable t, while the second and third columns represent $y(t)$ and $y^{\prime}(t)$, respectively. The two dependent variables are shown in the graph.

$$
\begin{aligned}
& A=\left(\begin{array}{cc}
0 & 1 \\
-1 & -2
\end{array}\right) \quad G(t):=\binom{0}{\sin (t)} \quad \text { U0 }:=\binom{0}{1} \\
& \mathrm{t} 0:=0 \quad \mathrm{tf}:=20 \quad \mathrm{n}:=100 \quad \mathrm{D}(\mathrm{t}, \mathrm{U}):=\mathrm{A} \cdot \mathrm{U}+\mathrm{G}(\mathrm{t}) \\
& S:=\operatorname{rlfixed}(\mathrm{UO}, \mathrm{ta}, \mathrm{tf}, \mathrm{n}, \mathrm{D}) \\
& T:=S^{\langle 0\rangle} \quad Y:=S^{\langle 1\rangle} \quad Y p:=S^{\langle 2\rangle} \\
& \frac{\mathrm{Y}}{\mathrm{Yp}}{ }_{0}
\end{aligned}
$$

This approach to the solution of a second-order ODE can be generalized to the solution of ODEs of any order, as long as it is linear.

ODE solution: gradually-varied flow (GVF) solution in a trapezoidal channel
The solution of gradually-varied flow (GVF) in open channels involves solving a firstorder ODE after calculating the normal and critical flow depths. An example of GVF solution in a trapezoidal channel is described next. The figure describing the crosssection was created in Paint and added with the menu option Insert>Picture.

```
Calculation of Gradually-Varied Flow (GVF) in a trapezoidal
channel.
    Variables:
    b: bed width
    \(\mathrm{m}_{\mathrm{H}}\) : side slope
    \(y\) : depth
    \(\mathrm{S}_{0}\) : bed slope
    K: coefficient for Manning's
    equations
    \(\left[\mathrm{K}=1.0\right.\) (Sl), \(\mathrm{K}=1.489\) (ES)] \(\quad \mathrm{x}_{\text {start }}\) initial position for calculation
    n : Manning's \(\mathrm{n} \quad \mathrm{x}_{\text {end }}\) : ending position for calculation
    \(Q\) : discharge \(\Delta x\) : uniform step size
    g: acceleration of gravity \(\quad N\) : number of cross-sections in
    [ \(\mathrm{g}=9.81\) (Sl), \(\mathrm{g}=32.2\) (ES)]
    \(y_{0}\) : initial depth for calculation, i.e., \(\quad z_{0}\) : bed elevation at section \(x_{\text {statt }}\)
    depth at section X YOU SE THE PROPER UMT SYSTEM. Give the following
    data:
    \(\mathrm{b}:=15.2 \quad \mathrm{~m}_{\mathrm{H}}:=0 \quad \mathrm{~S}_{\mathrm{o}}:=0.0009 \quad \mathrm{~K}:=1.0 \quad \mathrm{n}:=0.022 \quad \mathrm{Q}:=107 \quad \mathrm{~K}:=9.81\)
```

First, determine the type of uniform flow to be expected in this channel.
Normal depth (y_{n}) calculation:
Assume $\quad \mathrm{y}_{\mathrm{n}}:=1.0$
Given

$$
\begin{aligned}
& \mathrm{Q}=\frac{\left[\left(\mathrm{b}+\mathrm{m}_{\mathrm{H}} \cdot \mathrm{y}_{\mathrm{n}}\right) \cdot \mathrm{yH}_{\mathrm{n}}\right]^{\frac{5}{3}}}{2} \cdot \sqrt{\mathrm{~S}_{0}} \cdot \frac{\mathrm{~K}}{\mathrm{n}} \\
& \mathrm{X}_{\mathrm{m}}:=\operatorname{Find}\left(\mathrm{y}_{\mathrm{n}}\right) \quad \mathrm{y}_{\mathrm{n}}=3.066 \\
& \left(b+2 \cdot \mathrm{yr}_{\mathrm{r}} \cdot \sqrt{1+\mathrm{m}_{\mathrm{H}}^{2}}\right)^{\frac{3}{3}}
\end{aligned}
$$

Critical depth (y_{ρ}) calculation: +
Assume $\quad y_{c}:=1.0$
Given

$$
\frac{\left[\left(\mathrm{b}+\mathrm{m}_{\mathrm{H}} \cdot \mathrm{yc}_{\mathrm{c}}\right) \cdot \mathrm{y}_{\mathrm{c}}\right]^{3}}{\mathrm{~b}+2 \cdot \mathrm{~m}_{\mathrm{H}} \mathrm{y}_{\mathrm{c}}}=\frac{\mathrm{Q}^{2}}{\mathrm{~g}} \quad \quad \mathrm{X}_{\mathrm{s}}:=\operatorname{Find}\left(\mathrm{yc}_{\mathrm{c}}\right) \quad \mathrm{y}_{\mathrm{c}}=1.716
$$

G.V.F. calculation follows. Determine the type of flow and backwater curve that is appropriate according to the relative values of y_{n}, y_{c} and y_{0}, and decide direction of calculation (upstream or downstream). Fill in the following information:

* The slope is subcritical, calculation will proceed upstream with a curve type M3.
Give
$x_{\text {start }}:=100.0$
these
$y_{0}:=0.98$
$\begin{array}{ll}\mathrm{x}_{\text {end }}:=0.0 & \mathrm{~N}_{\mathrm{N}}:=100 \\ & \mathrm{z}_{0}:=0.0\end{array}$
$\Delta x:=\frac{x_{\text {end }}-x_{\text {start }}}{N}$
$\Delta x=-1$

Solution to the differential equation using the refixed (Runge-Kutta) function in Mathoad:

$$
\begin{aligned}
& Z:=\text { rhfixed }\left(\mathrm{y}, \mathrm{x}_{\text {start }}, \mathrm{x}_{\text {end }}, \mathrm{N}, \mathrm{D}\right) \quad \text { Call to function rkfixed to solve } \\
& z_{\mathrm{m}, 2}:=z_{0} \\
& \mathrm{j}:=0 . . \mathrm{N} \\
& z_{j, 2}:=z_{0,2}-j \cdot \Delta x \cdot S_{0} \quad \text { <- bed elevation Calculate bed and water surface elevations fo } \\
& Z_{j, 3}:=Z_{j, 1}+Z_{j, 2} \quad \begin{array}{c}
\text { <-- W.S. } \\
\text { elevation }
\end{array} \\
& \text { The function } D(x, y) \text { defines the } \\
& \text { differential equation to be solved: } \\
& d y / d x=\left(S_{f}-S_{0}\right) /\left(1-F r^{2}\right) \\
& 1-\left(\frac{\mathrm{Q}^{2}}{\mathrm{~g}}\right) \cdot \frac{\mathrm{b}+2 \cdot \mathrm{~m}_{\mathrm{H}} \cdot \mathrm{y}_{0}}{\left[\left(\mathrm{~b}+\mathrm{m}_{\mathrm{H}} \cdot \mathrm{y}_{0}\right) \cdot \mathrm{y}_{0}\right]^{3}} \\
& +
\end{aligned}
$$

Plot channel bed and free survace profile (not to

Mathcad reference tables and User's Guide

Mathcad provides a nice collection of reference tables by choosing the Help>Reference Tables. The options available are shown below:

F9 Mathcad Resources: Reference Tables			\square
Eile Edit View Insert Format Iools Symbolics Eook Help			
Basic Science	Properties of Liquids	Properties of Gases	^
Fundamental Constants	Density	Specific Gravity	
Physics - Mechanics	Viscosity	Specific Heat	
Periodic Table	Specific Gravity	Sound Velocity	
Calculus	Sound Velocity	Molecular Weight	
Derivative Formulas	Surace Tension		
Integral Formulas	Dielectric Constant	Properties of Metals	
	Index of Refraction	Thermal Conductivity	
Geometry	Molecular Weight	Specific Gravity	
Areas and Perimeters		Linear Expansion Coefficient	
$\frac{V}{\text { Volumes and Surface }}$	Properties of Solids	Electrical Resistivity	
Polyhedra	Density	Poisson's Ratio	
	Specific Gravity	Madulus of Elasticity	
Mechanics	Specific Heat	Melting Point	
Centroids	Thermal Conductivity	Temperature Coefficient	
Mass Moments of Inertia	Dielectric Constant	of Resistivity	
Electromagnetics			
Capacitance	- user's guide	release notes	
Oscillators			
<			\geqslant
Links to section		AUTO NUM	

Clicking the Fundamental Constants link, for example, produces the following list of constants:

[9) Mathcad Resources: Fundamental Physical Constants	$\square \square$
Eile Edit Yiew Insert Format Iools Symbolics Book Help	
Fundamental Physical Constants	\wedge
Universal Constants	
Velocity of light in vacuum $\quad\left(\mathrm{c}:=299792458 \cdot \frac{\mathrm{~m}}{\mathrm{sec}}\right)$	
Permeability of vacuum $\quad\left(\mu_{0}:=4 \cdot \pi \cdot 10^{-7} \cdot \frac{\text { newton }}{a^{2 m p}}\right)$	
Permittivity of vacuum $\quad\left(\varepsilon_{0}:=8.854187817 \cdot 10^{-12} \cdot \frac{\text { farad }}{\mathrm{m}}\right)$	
Newtonian constant of gravitation $\quad\left(\mathrm{G}:=6.6742 \cdot 10^{-11} \cdot \frac{\mathrm{~m}^{3}}{\mathrm{~kg} \cdot \mathrm{sec}^{2}}\right)$	
24	$\stackrel{\square}{v}$
く ㅃu]	\rangle
For Help, press F1 AUTO	NUM

Explore the reference tables on your own to identify those that may be helpful to your current classes or applications. Scrolling down the Reference Tables one finds the user's guide link which provides detailed instructions on the use of Mathcad's different features.

Using Mathcad's Tutorials

Tutorials are Mathcad worksheets that provide basic instructions on the use of Mathcad functions. Select the Help>Tutorials to access the available worksheets:

A good place to explore for new users would be the Getting Started Primers link. This will open a menu of links including one entitled Mathcad Toolbars. Clicking on this link provides a worksheet describing the different toolbars. For example, scrolling down the worksheet provides the following description of the Math Toolbar (some of which buttons we have presented earlier):

Explore more of the Getting Started Primers on your own. The menu in this Tutorial worksheet includes some of the subjects addressed in this document, e.g., Defining Functions, etc.

Using Mathcad's QuickSheets

QuickSheets are reference Mathcad worksheets that contain solved problems on a given mathematical subject. To access QuickSheets select the menu option Help>QuickSheets. This action will open a menu of QuickSheets as shown below:

The QuickSheets menu list a number of subjects for the user to select. For example, if you are looking for an example for calculating a double integral, you could click on the Calculus and DiffEQs link to access the following menu:

Select the Numerical Double Integrals link to see an example. The example, whose set up is shown below, describes triangular-shaped plate described by $R=\{c(x)<y<d(x)$, $a<x<b\}$ with a surface mass density $f(x, y)$.

Scrolling down the QuickSheet, we find a plot of the integration region as well as the following calculations for the mass and center-of-mass coordinates for a triangular plate with are density $f(x, y)$, i.e.,

F8. Mathcad Resources: Numerical Double Integrals	$\square \square$
Eile Edit Yiew Insert Format Iools Symbolics Eook Help	
Evaluate three double integrals, giving the mass and center of mass of the triangle (pictured). The density, $\mathrm{f}(\mathrm{x}, \mathrm{y})$, of the triangle at point (x, y) is proportional to the distance from (x, y) to the origin. $\begin{aligned} & \text { mass }:=\int_{a}^{b} \int_{c(x)}^{d(x)} f(x, y) d y d x \quad \text { mass }=0.383 \\ & x_{\mathrm{cm1}}:=\frac{1}{m a s s} \cdot \int_{a}^{b} \int_{c(x)}^{d(x)} \mathrm{x} \cdot \mathrm{f}(\mathrm{x}, \mathrm{y}) \mathrm{dy} \mathrm{dx} \\ & \mathrm{y}_{\mathrm{cm1}}:=\frac{1}{\text { mass }} \cdot \int_{a}^{b} \int_{\mathrm{c}(\mathrm{x})}^{\mathrm{d}(\mathrm{x})} \mathrm{y} \cdot \mathrm{f}(\mathrm{x}, \mathrm{y}) \mathrm{dy} \mathrm{dx} \\ & \mathrm{cm1}:=\binom{\mathrm{x}_{\mathrm{cm1}}}{\mathrm{y}_{\mathrm{cm1}}} \quad \mathrm{cm1}=\binom{0.75}{0.398} \end{aligned}$	^
< [1]	$)^{-}$
Press F1 for help. AUTO	NUM

Using the File $>$ Save As... menu option you can copy the QuickSheet into a new Mathcad worksheet that you can then modify to address a specific solution.

